强激光与粒子束, 2013, 25 (11): 3035, 网络出版: 2013-11-14  

Vaughan二次电子发射模型的深入研究与拓展

Research and extension of Vaughan’s secondary electron emission
作者单位
1 东南大学 毫米波国家重点实验室, 南京 210096
2 西安空间无线电技术研究所 空间微波技术重点实验室, 西安 710100
3 西安交通大学 电子物理与器件教育部重点实验室, 西安 710049
摘要
当前国际上基于Vaughan二次电子模型的材料数据库十分丰富,且其数据均经过大量实验验证,具有很高的实验精度和可信度。为了将这些数据库融入到自主开发的电磁粒子联合模拟平台,完善和提高电磁粒子混合算法的计算精度,在对经典Vaughan模型做了深入研究的基础上,成功地推导出产生二次电子数目的计算方法。此外,为了使经典Vaughan二次电子发射理论更便捷和完整地应用到实际工程应用当中,还对二次电子出射能量以及二次电子出射角度的计算等实际问题做了进一步的拓展性研究。数值计算结果验证了拓展后Vaughan模型算法的准确性和鲁棒性。
Abstract
The material databases for the Vaughan’s secondary electron model which is popularly utilized in the plasma simulation are abundant. Most of them are highly accurate and reliable, due to the validations of experiments. In order to integrate these precious databases into our electromagnetic-particle simulation platform and improve the computational precision of our simulation platform, the classic Vaughan’s model for the secondary electron emission is firstly researched. Based on the derivation of the numerical method to generate the actual number of secondary electrons, the way to calculate the energy of each secondary electron and the method to obtain the emissive angle are successfully proposed. Due to our work, it is more convenient to numerically implement the Vaughan’s theorem in practical applications. Furthermore, the accuracy and the robustness of our proposed methods are validated by the computational results in this paper.
参考文献

[1] Dekker A J. Secondary electron emission[J]. Solid State Physics, 1958, 6: 251-315.

[2] Bruining H. Physics and applications of secondary electron emission [M]. Oxford: Pergamon Press, 1954.

[3] 谢爱根.二次电子发射的研究和二次电子发射系数的测量[D]. 合肥:中国科学技术大学, 2005.(Xie Aigen. Research of secondary electron emission and measurement of secondary electron yield. Hefei: University of Science and Technology of China, 2005)

[4] Zameroski N D, Prashanth Kumar, Christopher Watts, et al. Secondary electron yield measurements from materials with application to collectors of high-power microwave devices[J]. IEEE Trans Plasma Sci, 2006, 34(3): 642-651.

[5] Vaughan J R. Multipactor[J]. IEEE Trans Electron Devices, 1988, 35(7): 1172-1180.

[6] Vaughan J R. New formula for secondary emission yield[J]. IEEE Trans Electron Devices, 1989, 36(9): 1963-1967.

[7] Vaughan J R. Secondary emission formulas[J]. IEEE Trans Electron Devices, 1993, 40(4): 830-830.

[8] Furman M A, Lambertson G R. The electron-cloud instability in the arcs of the PEP-Ⅱ positron ring[R]. Proc Intl Workshop on Multi-bunch Instabilities in Future Electron and Positron Accelerators (MBI-97), KEK, Tsukuba, Japan, 1997.

[9] Furman M A, Pivi M T. Simulation of secondary electron emission based on a phenomenological probabilistic model[R]. LBNL-52807, 2003.

[10] Lye R G, Dekker A J. Theory of secondary emission[J]. Phys Rev, 1957, 107: 977-981.

[11] Salehi M, Flinn E A. Dependence of secondary-electron emission from amorphous materials on primary angle of incidence[J]. Journal Appl Phys, 1981, 52: 994-996.

[12] Bouchard C, Carette J D. The secondary electron emission coefficient of disordered surfaces [J]. Surface Sci, 1980, 100: 241-250.

[13] 董烨,董志伟,杨温渊. 金属双边二次电子倍增的理论分析与数值模拟[J].强激光与粒子束, 2011, 23(2): 454-462.(Dong Ye, Dong Zhiwei, Yang Wenyuan. Theoretic analysis and numerical simulation of metal two-sided multipactor discharge. High Power Laser and Particle Beams, 2011, 23(2): 454-462)

[14] Milton Abramowitz, Irene Anne Stegun. Handbook of mathematical functions[M]. 9th ed. Dover Publications Inc, 1970.

游检卫, 张剑锋, 李韵, 王洪广. Vaughan二次电子发射模型的深入研究与拓展[J]. 强激光与粒子束, 2013, 25(11): 3035. You Jianwei, Zhang Jianfeng, Li Yun, Wang Hongguang. Research and extension of Vaughan’s secondary electron emission[J]. High Power Laser and Particle Beams, 2013, 25(11): 3035.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!