中国激光, 2021, 48 (2): 0202008, 网络出版: 2021-01-06   

面向电解水的激光制备微纳米结构催化电极 下载: 1544次特邀综述

Laser Fabricated Electrodes with Micro-Nano Structures for Electrocatalytic Water Splitting
作者单位
清华大学材料学院激光材料加工研究中心, 北京 100084
引用该论文

蔡明勇, 江国琛, 钟敏霖. 面向电解水的激光制备微纳米结构催化电极[J]. 中国激光, 2021, 48(2): 0202008.

Cai Mingyong, Jiang Guochen, Zhong Minlin. Laser Fabricated Electrodes with Micro-Nano Structures for Electrocatalytic Water Splitting[J]. Chinese Journal of Lasers, 2021, 48(2): 0202008.

参考文献

[1] Chu S, Majumdar A. Opportunities and challenges for a sustainable energy future[J]. Nature, 2012, 488(7411): 294-303.

[2] Turner J A. Sustainable hydrogen production[J]. Science, 2004, 305(5686): 972-974.

[3] Sapountzi F M, Gracia J M. Weststrate C J J, et al. Electrocatalysts for the generation of hydrogen, oxygen and synthesis gas[J]. Progress in Energy and Combustion Science, 2017, 58: 1-35.

[4] TaibiE, MirandaR, VanhoudtW, et al. Hydrogen from renewable power: technology outlook for the energy transition[EB/OL]. [2020-07-06].https://www.researchgate.net/publication/339788785_Hydrogen_from_renewable_power_Technology_outlook_for_the_energy_transition.

[5] Zou X X, Zhang Y. Noble metal-free hydrogen evolution catalysts for water splitting[J]. Chemical Society Reviews, 2015, 44(15): 5148-5180.

[6] 刘芸. 绿色能源氢能及其电解水制氢技术进展[J]. 电源技术, 2012, 36(10): 1579-1581.

    Liu Y. Progress of green energy hydrogen energy and technology of hydrogen production by water electrolysis[J]. Chinese Journal of Power Sources, 2012, 36(10): 1579-1581.

[7] Zeng K, Zhang D K. Recent progress in alkaline water electrolysis for hydrogen production and applications[J]. Progress in Energy and Combustion Science, 2010, 36(3): 307-326.

[8] Li J, Zheng G F. One-dimensional earth-abundant nanomaterials for water-splitting electrocatalysts[J]. Advanced Science, 2017, 4(3): 1600380.

[9] 陶磊明. 尖晶石型过渡金属基催化剂的设计合成及其电催化分解水性能研究[D]. 武汉: 华中科技大学, 2018.

    Tao LM. Design, synthesis, and evaluation of spinel transition-metal-based electrocatalysts for water-splitting[D]. Wuhan: Huazhong University of Science and Technology, 2018.

[10] Wang J, Xu F, Jin H Y, et al. Non-noble metal-based carbon composites in hydrogen evolution reaction: fundamentals to applications[J]. Advanced Materials, 2017, 29(14): 1605838.

[11] Anantharaj S, Ede S R, Karthick K, et al. Precision and correctness in the evaluation of electrocatalytic water splitting: revisiting activity parameters with a critical assessment[J]. Energy & Environmental Science, 2018, 11(4): 744-771.

[12] Lyu F L, Wang Q F, Choi S M, et al. Noble-metal-free electrocatalysts for oxygen evolution[J]. Small, 2019, 15(1): 1804201.

[13] Seh Z W, Kibsgaard J, Dickens C F, et al. 355(6321): eaad4998[J]. experiment in electrocatalysis: insights into materials design. Science, 2017.

[14] Sun H M, Yan Z H, Liu F M, et al. Self-supported transition-metal-based electrocatalysts for hydrogen and oxygen evolution[J]. Advanced Materials, 2020, 32(3): 1806326.

[15] Sivanantham A, Ganesan P, Vinu A, et al. Surface activation and reconstruction of non-oxide-based catalysts through in situ electrochemical tuning for oxygen evolution reactions in alkaline media[J]. ACS Catalysis, 2020, 10(1): 463-493.

[16] Jia X D, Zhao Y F, Chen G B, et al. Ni3FeN nanoparticles derived from ultrathin NiFe-layered double hydroxide nanosheets: an efficient overall water splitting electrocatalyst[J]. Advanced Energy Materials, 2016, 6(10): 1502585.

[17] Liu H J, He Q, Jiang H L, et al. Electronic structure reconfiguration toward pyrite NiS2 via engineered heteroatom defect boosting overall water splitting[J]. ACS Nano, 2017, 11(11): 11574-11583.

[18] Palneedi H, Park J H, Maurya D, et al. Laser irradiation of metal oxide films and nanostructures: applications and advances[J]. Advanced Materials, 2018, 30(14): 1705148.

[19] 周玥. 激光合成富含结构缺陷的过渡金属化合物及其能源应用研究[D]. 天津: 天津大学, 2017.

    ZhouY. Laser synthesis of transition metal compounds abundant with structural defects and their application in energy field[D]. Tianjin: Tianjin University, 2017.

[20] Zhang D S, Liu J, Li P F, et al. Recent advances in surfactant-free, surface-charged, and defect-rich catalysts developed by laser ablation and processing in liquids[J]. ChemNanoMat, 2017, 3(8): 512-533.

[21] Niu K Y, Yang J, Kulinich S A, et al. Morphology control of nanostructures via surface reaction of metal nanodroplets[J]. Journal of the American Chemical Society, 2010, 132(28): 9814-9819.

[22] Niu K Y, Lin F, Jung S, et al. Tuning complex transition metal hydroxide nanostructures as active catalysts for water oxidation by a laser-chemical route[J]. Nano Letters, 2015, 15(4): 2498-2503.

[23] Sun X C, Wang J Q, Yin Y H, et al. Laser-ablation-produced cobalt nickel phosphate with high-valence nickel ions as an active catalyst for the oxygen evolution reaction[J]. Chemistry-A European Journal, 2020, 26(13): 2793-2797.

[24] Zhou Y, Dong C K, Han L L, et al. Top-down preparation of active cobalt oxide catalyst[J]. ACS Catalysis, 2016, 6(10): 6699-6703.

[25] Qiu K W, Xi C, Zhang Y, et al. Laser-induced oxygen vacancies in FeCo2O4 nanoparticles for boosting oxygen evolution and reduction[J]. Chemical Communications, 2019, 55(59): 8579-8582.

[26] Waag F, Gökce B, Kalapu C, et al. Adjusting the catalytic properties of cobalt ferrite nanoparticles by pulsed laser fragmentation in water with defined energy dose[J]. Scientific Reports, 2017, 7(1): 13161.

[27] Yu M Q, Waag F, Chan C K, et al. Laser fragmentation-induced defect-rich cobalt oxide nanoparticles for electrochemical oxygen evolution reaction[J]. ChemSusChem, 2020, 13(3): 520-528.

[28] Zhong W, Lin Z, Feng S, et al. Improved oxygen evolution activity of IrO2 by in situ engineering of an ultra-small Ir sphere shell utilizing a pulsed laser[J]. Nanoscale, 2019, 11(10): 4407-4413.

[29] Wang X R, Liu J Y, Liu Z W, et al. Identifying the key role of pyridinic-N-Co bonding in synergistic electrocatalysis for reversible ORR/OER[J]. Advanced Materials, 2018, 30(23): 1800005.

[30] Feng T, Zhao X R, Dong C K, et al. Boosting reversible oxygen electrocatalysis with enhanced interfacial pyridinic-N-Co bonding in cobalt oxide/mesoporous N-doped graphene hybrids[J]. Nanoscale, 2018, 10(47): 22140-22147.

[31] Yin Y H, Sun X C, Zhou M, et al. Laser-induced pyridinic-nitrogen-rich defective carbon nanotubes for efficient oxygen electrocatalysis[J]. ChemCatChem, 2019, 11(24): 6131-6138.

[32] Liu Z W, Zhao X R, Chen X L, et al. Laser synthesized bi-functional hybrid catalyst oxygen-defective Co3O4-x/N-graphene for oxygen electrode reactions[J]. Chemistry Letters, 2019, 48(2): 118-121.

[33] Hunter B M, Blakemore J D, Deimund M, et al. Highly active mixed-metal nanosheet water oxidation catalysts made by pulsed-laser ablation in liquids[J]. Journal of the American Chemical Society, 2014, 136(38): 13118-13121.

[34] Hu S, Goenaga G, Melton C, et al. PtCo/CoOx nanocomposites: bifunctional electrocatalysts for oxygen reduction and evolution reactions synthesized via tandem laser ablation synthesis in solution-galvanic replacement reactions[J]. Applied Catalysis B: Environmental, 2016, 182: 286-296.

[35] Pizzolato E, Scaramuzza S, Carraro F, et al. Water oxidation electrocatalysis with iron oxide nanoparticles prepared via laser ablation[J]. Journal of Energy Chemistry, 2016, 25(2): 246-250.

[36] Nishi T, Hayasaka Y, Suzuki T M, et al. Electrochemical water oxidation catalysed by CoO-Co2O3 -Co(OH)2 multiphase-nanoparticles prepared by femtosecond laser ablation in water[J]. ChemistrySelect, 2018, 3(17): 4979-4984.

[37] Vassalini I, Borgese L, Mariz M, et al. Enhanced electrocatalytic oxygen evolution in Au-Fe nanoalloys[J]. Angewandte Chemie International Edition, 2017, 56(23): 6589-6593.

[38] Wang X, Li Z, Wu D Y, et al. Porous cobalt-nickel hydroxide nanosheets with active cobalt ions for overall water splitting[J]. Small, 2019, 15(8): 1804832.

[39] Gao Z W, Ma T, Chen X M, et al. Strongly coupled CoO nanoclusters/CoFe LDHs hybrid as a synergistic catalyst for electrochemical water oxidation[J]. Small, 2018, 14(17): 1800195.

[40] Gao Z W, Liu J Y, Chen X M, et al. Engineering NiO/NiFe LDH intersection to bypass scaling relationship for oxygen evolution reaction via dynamic tridimensional adsorption of intermediates[J]. Advanced Materials, 2019, 31(11): 1804769.

[41] Li Z, Zhang Y, Feng Y, et al. Co3O4 nanoparticles with ultrasmall size and abundant oxygen vacancies for boosting oxygen involved reactions[J]. Advanced Functional Materials, 2019, 29(36): 1903444.

[42] Meng C, Lin M C, Sun X C, et al. Laser synthesis of oxygen vacancy-modified CoOOH for highly efficient oxygen evolution[J]. Chemical Communications, 2019, 55(20): 2904-2907.

[43] Wang H B, Wang J Q, Mintcheva N, et al. Laser synthesis of iridium nanospheres for overall water splitting[J]. Materials, 2019, 12(18): 3028.

[44] Xiao Z H, Jiang D C, Xu H, et al. UV laser regulation of surface oxygen vacancy of CoFe2O4 for enhanced oxygen evolution reaction[J]. Chinese Journal of Chemical Physics, 2018, 31(5): 691-694.

[45] Ou G, Fan P X, Zhang H J, et al. Large-scale hierarchical oxide nanostructures for high-performance electrocatalytic water splitting[J]. Nano Energy, 2017, 35: 207-214.

[46] Cai M Y, Pan R, Liu W J, et al. Laser-assisted doping and architecture engineering of Fe3O4 nanoparticles for highly enhanced oxygen evolution reaction[J]. ChemSusChem, 2019, 12(15): 3562-3570.

[47] Cai M Y, Liu W J, Luo X, et al. Three-dimensional and in situ-activated spinel oxide nanoporous clusters derived from stainless steel for efficient and durable water oxidation[J]. ACS Applied Materials & Interfaces, 2020, 12(12): 13971-13981.

[48] Cai M Y, Pan R, Liu W J, et al. Pulsed laser-assisted synthesis of defect-rich NiFe-based oxides for efficient oxygen evolution reaction[J]. Journal of Laser Applications, 2020, 32(2): 022032.

[49] Li Y J, Zhou X F, Qi W H, et al. Ultrafast fabrication of Cu oxide micro/nano-structures via laser ablation to promote oxygen evolution reaction[J]. Chemical Engineering Journal, 2020, 383: 123086.

[50] Wu H F, Yin K, Qi W H, et al. Rapid fabrication of Ni/NiO@CoFe layered double hydroxide hierarchical nanostructures by femtosecond laser ablation and electrodeposition for efficient overall water splitting[J]. ChemSusChem, 2019, 12(12): 2773-2779.

[51] Zhou X F, Qi W H, Yin K, et al. Co(OH)2 nanosheets supported on laser ablated Cu foam: an efficient oxygen evolution reaction electrocatalyst[J]. Frontiers in Chemistry, 2020, 7: 900.

[52] Karthik N, Tian T. Edison T N J I, et al. Pulsed laser rusted stainless steel:a robust electrode material applied for energy storage and generation applications[J]. Sustainable Energy & Fuels, 2020, 4(3): 1242-1253.

[53] Cui X D, Zhang B L, Zeng C Y, et al. Laser processed Ni-Fe alloys as electrocatalyst toward oxygen evolution reaction[J]. Materials Research Express, 2018, 5(6): 066527.

[54] Koj M, Gimpel T, Schade W, et al. Laser structured nickel-iron electrodes for oxygen evolution in alkaline water electrolysis[J]. International Journal of Hydrogen Energy, 2019, 44(25): 12671-12684.

[55] Cui X D, Zhang B L, Zeng C Y, et al. Monolithic nanoporous NiFe alloy by dealloying laser processed NiFeAl as electrocatalyst toward oxygen evolution reaction[J]. International Journal of Hydrogen Energy, 2018, 43(32): 15234-15244.

[56] Han X, Ye R Q, Chyan Y, et al. Laser-induced graphene from wood impregnated with metal salts and use in electrocatalysis[J]. ACS Applied Nano Materials, 2018, 1(9): 5053-5061.

[57] Ren M Q, Zhang J B, Tour J M. Laser-induced graphene synthesis of Co3O4 in graphene for oxygen electrocatalysis and metal-air batteries[J]. Carbon, 2018, 139: 880-887.

[58] Zhang J B, Ren M Q, Li Y L, et al. In situ synthesis of efficient water oxidation catalysts in laser-induced graphene[J]. ACS Energy Letters, 2018, 3(3): 677-683.

[59] Zhang J, Zhang C, Sha J, et al. Efficient water-splitting electrodes based on laser-induced graphene[J]. ACS Applied Materials & Interfaces, 2017, 9(32): 26840-26847.

[60] Zhang J B, Ren M Q, Wang L Q, et al. Oxidized laser-induced graphene for efficient oxygen electrocatalysis[J]. Advanced Materials, 2018, 30(21): 1707319.

[61] Ren M Q, Zhang J B, Tour J M. Laser-induced graphene hybrid catalysts for rechargeable Zn-air batteries[J]. ACS Applied Energy Materials, 2019, 2(2): 1460-1468.

[62] Deng H, Zhang C, Xie Y C, et al. Laser induced MoS2/carbon hybrids for hydrogen evolution reaction catalysts[J]. Journal of Materials Chemistry A, 2016, 4(18): 6824-6830.

[63] Ou G, Fan P X, Ke X X, et al. Defective molybdenum sulfide quantum dots as highly active hydrogen evolution electrocatalysts[J]. Nano Research, 2018, 11(2): 751-761.

[64] Zuo P, Jiang L, Li X, et al. Metal (Ag, Pt)-MoS2 hybrids greenly prepared through photochemical reduction of femtosecond laser pulses for SERS and HER[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(6): 7704-7714.

[65] Li B, Jiang L, Li X, et al. Controllable synthesis of nanosized amorphous MoSx using temporally shaped femtosecond laser for highly efficient electrochemical hydrogen production[J]. Advanced Functional Materials, 2019, 29(1): 1806229.

[66] Meng C, Lin M C, Du X W, et al. Molybdenum disulfide modified by laser irradiation for catalyzing hydrogen evolution[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(7): 6999-7003.

[67] Gao Z W, Liu M J, Zheng W R, et al. Surface engineering of MoS2 via laser-induced exfoliation in protic solvents[J]. Small, 2019, 15(44): 1903791.

[68] Hung T F, Yin Z W, Betzler S B, et al. Nickel sulfide nanostructures prepared by laser irradiation for efficient electrocatalytic hydrogen evolution reaction and supercapacitors[J]. Chemical Engineering Journal, 2019, 367: 115-122.

[69] Johny J, Guzman S S, Krishnan B, et al. SnS2 nanoparticles by liquid phase laser ablation: effects of laser fluence, temperature and post irradiation on morphology and hydrogen evolution reaction[J]. Applied Surface Science, 2019, 470: 276-288.

[70] Zheng W J, Zhang Y, Niu K Y, et al. Selective nitrogen doping of graphene oxide by laser irradiation for enhanced hydrogen evolution activity[J]. Chemical Communications, 2018, 54(97): 13726-13729.

[71] Chen C H, Wu D Y, Li Z, et al. Ruthenium-based single-atom alloy with high electrocatalytic activity for hydrogen evolution[J]. Advanced Energy Materials, 2019, 9(20): 1803913.

[72] Kang W J, Cheng C Q, Li Z, et al. Ultrafine Ag nanoparticles as active catalyst for electrocatalytic hydrogen production[J]. ChemCatChem, 2019, 11(24): 5976-5981.

[73] Li Z, Fu J Y, Feng Y, et al. A silver catalyst activated by stacking faults for the hydrogen evolution reaction[J]. Nature Catalysis, 2019, 2(12): 1107-1114.

[74] Volpato G A, Muneton Arboleda D, Brandiele R, et al. Clean rhodium nanoparticles prepared by laser ablation in liquid for high performance electrocatalysis of the hydrogen evolution reaction[J]. Nanoscale Advances, 2019, 1(11): 4296-4300.

[75] Rauscher T, Müller C I, Gabler A, et al. Femtosecond-laser structuring of Ni electrodes for highly active hydrogen evolution[J]. Electrochimica Acta, 2017, 247: 1130-1139.

[76] Gabler A, Müller C I, Rauscher T, et al. Ultrashort-pulse laser structured titanium surfaces with sputter-coated platinum catalyst as hydrogen evolution electrodes for alkaline water electrolysis[J]. International Journal of Hydrogen Energy, 2018, 43(15): 7216-7226.

[77] Cai M Y, Han J P, Lin Y, et al. CoS2-incorporated WS2 nanosheets for efficient hydrogen production[J]. Electrochimica Acta, 2018, 287: 1-9.

[78] Cheng P F, Feng T, Liu Z W, et al. Laser-direct-writing of 3D self-supported NiS2/MoS2 heterostructures as an efficient electrocatalyst for hydrogen evolution reaction in alkaline and neutral electrolytes[J]. Chinese Journal of Catalysis, 2019, 40(8): 1147-1152.

[79] Ye R Q, Peng Z W, Wang T, et al. In situ formation of metal oxide nanocrystals embedded in laser-induced graphene[J]. ACS Nano, 2015, 9(9): 9244-9251.

[80] Nayak P, Jiang Q, Kurra N, et al. Monolithic laser scribed graphene scaffolds with atomic layer deposited platinum for the hydrogen evolution reaction[J]. Journal of Materials Chemistry A, 2017, 5(38): 20422-20427.

[81] Niu K Y, Fang L, Ye R, et al. Tailoring transition-metal hydroxides and oxides by photon-induced reactions[J]. Angewandte Chemie International Edition, 2016, 55(46): 14272-14276.

[82] Niu K, Xu Y, Wang H, et al. A spongy nickel-organic CO2 reduction photocatalyst for nearly 100% selective CO production[J]. Science Advances, 2017, 3(7): e1700921.

[83] Blakemore J D, Gray H B, Winkler J R, et al. Co3O4 nanoparticle water-oxidation catalysts made by pulsed-laser ablation in liquids[J]. ACS Catalysis, 2013, 3(11): 2497-2500.

[84] Hunter B M, Hieringer W, Winkler J R, et al. Effect of interlayer anions on [NiFe]-LDH nanosheet water oxidation activity[J]. Energy & Environmental Science, 2016, 9(5): 1734-1743.

[85] Dong C, Liu Z W, Liu J Y, et al. Modest oxygen-defective amorphous manganese-based nanoparticle mullite with superior overall electrocatalytic performance for oxygen reduction reaction[J]. Small, 2017, 13(16): 1603903.

[86] Hunter B M, Thompson N B, Müller A M, et al. Trapping an iron(VI) water-splitting intermediate in nonaqueous media[J]. Joule, 2018, 2(4): 747-763.

[87] Liu J L, Zhu D D, Zheng Y, et al. Self-supported earth-abundant nanoarrays as efficient and robust electrocatalysts for energy-related reactions[J]. ACS Catalysis, 2018, 8(7): 6707-6732.

[88] 肖健. 过渡金属基自支撑电极的结构设计及电解水性能的研究[D]. 武汉: 华中科技大学, 2018.

    XiaoJ. Designing and water electrolysis properties of transition metal based self-supported electrodes[D]. Wuhan: Huazhong University of Science and Technology, 2018.

[89] Fan P X, Pan R, Zhong M L. Ultrafast laser enabling hierarchical structures for versatile superhydrophobicity with enhanced Cassie-Baxter stability and durability[J]. Langmuir, 2019, 35(51): 16693-16711.

[90] Fan P X, Zhong M L, Bai B F, et al. Tuning the optical reflection property of metal surfaces via micro-nano particle structures fabricated by ultrafast laser[J]. Applied Surface Science, 2015, 359: 7-13.

[91] Long J Y, Fan P X, Zhong M L, et al. Superhydrophobic and colorful copper surfaces fabricated by picosecond laser induced periodic nanostructures[J]. Applied Surface Science, 2014, 311: 461-467.

[92] Mu X W, Wen Q H, Ou G, et al. A current collector covering nanostructured villous oxygen-deficient NiO fabricated by rapid laser-scan for Li-O2 batteries[J]. Nano Energy, 2018, 51: 83-90.

[93] . of a binder-free nano-cotton-like CuO-Cu integrated anode on a current collector by laser ablation oxidation for long cycle life Li-ion batteries,[J]. Journal of Materials Chemistry A, 2017, 5(37): 19781-19789.

    LiangP, Zhang HJ, Su YB, et al. In situ preparation

[94] Fan P X, Wu H, Zhong M L, et al. Large-scale cauliflower-shaped hierarchical copper nanostructures for efficient photothermal conversion[J]. Nanoscale, 2016, 8(30): 14617-14624.

[95] Fan P, Bai B, Zhong M, et al. General strategy toward dual-scale-controlled metallic micro-nano hybrid structures with ultralow reflectance[J]. ACS Nano, 2017, 11(7): 7401-7408.

[96] Cai M, Fan P, Long J, et al. Large-scale tunable 3D self-supporting WO3 micro-nano architectures as direct photoanodes for efficient photoelectrochemical water splitting[J]. ACS Applied Materials & Interfaces, 2017, 9(21): 17856-17864.

[97] Fan P, Bai B, Long J, et al. Broadband high-performance infrared antireflection nanowires facilely grown on ultrafast laser structured Cu surface[J]. Nano Letters, 2015, 15(9): 5988-5994.

[98] Pan R, Cai M Y, Liu W J, et al. Extremely high Cassie-Baxter state stability of superhydrophobic surfaces via precisely tunable dual-scale and triple-scale micro-nano structures[J]. Journal of Materials Chemistry A, 2019, 7(30): 18050-18062.

[99] Han J P, Cai M Y, Lin Y, et al. 3D re-entrant nanograss on microcones for durable superamphiphobic surfaces via laser-chemical hybrid method[J]. Applied Surface Science, 2018, 456: 726-736.

[100] 龙江游, 范培迅, 龚鼎为, 等. 超快激光制备具有特殊浸润性的仿生表面[J]. 中国激光, 2016, 43(8): 0800001.

    Long J Y, Fan P X, Gong D W, et al. Ultrafast laser fabricated bio-inspired surfaces with special wettability[J]. Chinese Journal of Lasers, 2016, 43(8): 0800001.

[101] 潘瑞, 钟敏霖. 超快激光制备超疏水超亲水表面及超疏水表面机械耐久性[J]. 科学通报, 2019, 64(12): 1268-1289.

    Pan R, Zhong M L. Fabrication of superwetting surfaces by ultrafast lasers and mechanical durability of superhydrophobic surfaces[J]. Chinese Science Bulletin, 2019, 64(12): 1268-1289.

[102] Niu S, Jiang W J, Wei Z X, et al. Se-doping activates FeOOH for cost-effective and efficient electrochemical water oxidation[J]. Journal of the American Chemical Society, 2019, 141(17): 7005-7013.

[103] Suryawanshi M P, Ghorpade U V, Shin S W, et al. Hierarchically coupledni: FeOOH nanosheets on 3D N-doped graphite foam as self-supported electrocatalysts for efficient and durable water oxidation[J]. ACS Catalysis, 2019, 9(6): 5025-5034.

[104] Zou X X, Wu Y Y, Liu Y P, et al. In situ generation of bifunctional, efficient Fe-based catalysts from mackinawite iron sulfide for water splitting[J]. Chem, 2018, 4(5): 1139-1152.

[105] Liu Y, Liang X, Gu L, et al. Corrosion engineering towards efficient oxygen evolution electrodes with stable catalytic activity for over 6000 hours[J]. Nature Communications, 2018, 9(1): 2609.

[106] Guo F F, Wu Y Y, Chen H, et al. High-performance oxygen evolution electrocatalysis by boronized metal sheets with self-functionalized surfaces[J]. Energy & Environmental Science, 2019, 12(2): 684-692.

[107] Che Q J, Li Q, Tan Y, et al. One-step controllable synthesis of amorphous (Ni-Fe)Sx/NiFe(OH)y hollow microtube/sphere films as superior bifunctional electrocatalysts for quasi-industrial water splitting at large-current-density[J]. Applied Catalysis B: Environmental, 2019, 246: 337-348.

蔡明勇, 江国琛, 钟敏霖. 面向电解水的激光制备微纳米结构催化电极[J]. 中国激光, 2021, 48(2): 0202008. Cai Mingyong, Jiang Guochen, Zhong Minlin. Laser Fabricated Electrodes with Micro-Nano Structures for Electrocatalytic Water Splitting[J]. Chinese Journal of Lasers, 2021, 48(2): 0202008.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!