Photonics Research, 2020, 8 (5): 05000648, Published Online: Apr. 20, 2020  

Circular Dammann gratings for enhanced control of the ring profile of perfect optical vortices Download: 581次

Author Affiliations
1 Laboratory of Information Optics and Opto-electronic Technology, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
2 School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
3 University of Chinese Academy of Sciences, Beijing 100049, China
4 Department of Physics, Zhejiang University of Science and Technology, Hangzhou 310023, China
5 e-mail: Junjiey@siom.ac.cn
6 e-mail: chazhou@mail.shcnc.ac.cn
Copy Citation Text

Junjie Yu, Chaofeng Miao, Jun Wu, Changhe Zhou. Circular Dammann gratings for enhanced control of the ring profile of perfect optical vortices[J]. Photonics Research, 2020, 8(5): 05000648.

References

[1] J. F. Nye, M. V. Berry. Dislocations in wave trains. Proc. R. Soc. Lond. A, 1974, 336: 165-190.

[2] A. M. Yao, M. J. Padgett. Orbital angular momentum: origins, behavior and applications. Adv. Opt. Photon., 2011, 3: 161-204.

[3] L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, J. P. Woerdman. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes. Phys. Rev. A, 1992, 45: 8185-8189.

[4] S. W. Hell, J. Wichmann. Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy. Opt. Lett., 1994, 19: 780-782.

[5] M. Kamper, H. Ta, N. A. Jensen, S. W. Hell, S. Jakobs. Near-infrared STED nanoscopy with an engineered bacterial phytochrome. Nat. Commun., 2018, 9: 4762.

[6] Y. Roichman, B. Sun, Y. Roichman, J. Amato-Grill, D. G. Grier. Optical forces arising from phase gradients. Phys. Rev. Lett., 2008, 100: 013602.

[7] M. Woerdemann, C. Alpmann, M. Esseling, C. Denz. Advanced optical trapping by complex beam shaping. Laser Photon. Rev., 2013, 7: 839-854.

[8] G. Chen, X. Huang, C. Xu, L. Huang, J. Xie, D. Deng. Propagation properties of autofocusing off-axis hollow vortex Gaussian beams in free space. Opt. Express, 2019, 27: 6357-6369.

[9] G. Molina-Terriza, A. Vaziri, J. Řeháček, Z. Hradil, A. Zeilinger. Triggered qutrits for quantum communication protocols. Phys. Rev. Lett., 2004, 92: 167903.

[10] N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, S. Ramachandran. Terabit-scale orbital angular momentum mode division multiplexing in fibers. Science, 2013, 340: 1545-1548.

[11] A. E. Willner. Vector-mode multiplexing brings an additional approach for capacity growth in optical fibers. Light Sci. Appl., 2018, 7: 18002.

[12] G. Foo, D. M. Palacios, G. A. Swartzlander. Optical vortex coronagraph. Opt. Lett., 2005, 30: 3308-3310.

[13] S. Fürhapter, A. Jesacher, S. Bernet, M. Ritsch-Marte. Spiral phase contrast imaging in microscopy. Opt. Express, 2005, 13: 689-694.

[14] Y. Pan, W. Jia, J. Yu, K. Dobson, C. Zhou, Y. Wang, T.-C. Poon. Edge extraction using a time-varying vortex beam in incoherent digital holography. Opt. Lett., 2014, 39: 4176-4179.

[15] T. Yuan, Y. Cheng, H. Wang, Y. Qin, B. Fan. Radar imaging using electromagnetic wave carrying orbital angular momentum. J. Electron. Imaging, 2017, 26: 023016.

[16] D. Gauthier, P. Ribič, G. Adhikary, A. Camper, C. Chappuis, R. Cucini, L. F. DiMauro, G. Dovillaire, F. Frassetto, R. Géneaux, P. Miotti, L. Poletto, B. Ressel, C. Spezzani, M. Stupar, T. Ruchon, G. De Ninno. Tunable orbital angular momentum in high-harmonic generation. Nat. Commun., 2017, 8: 14971.

[17] R. Géneaux, A. Camper, T. Auguste, O. Gobert, J. Caillat, R. Taieb, T. Ruchon. Synthesis and characterization of attosecond light vortices in the extreme ultraviolet. Nat. Commun., 2016, 7: 12583.

[18] M. Zuerch, C. Kern, P. Hansinger, A. Dreischuh, C. Spielmann. Strong-field physics with singular light beams. Nat. Phys., 2012, 8: 743-746.

[19] A. Denoeud, L. Chopineau, A. Leblanc, F. Quere. Interaction of ultraintense laser vortices with plasma mirrors. Phys. Rev. Lett., 2017, 118: 033902.

[20] J. Wang, M. Zepf, S. G. Rykovanov. Intense attosecond pulses carrying orbital angular momentum using laser plasma interactions. Nat. Commun., 2019, 10: 5554.

[21] S. Sasaki, I. McNulty. Proposal for generating brilliant x-ray beams carrying orbital angular momentum. Phys. Rev. Lett., 2008, 100: 124801.

[22] Y. Chen, J. Li, K. Z. Hatsagortsyan, C. H. Keitel. γ-ray beams with large orbital angular momentum via nonlinear Compton scattering with radiation reaction. Phys. Rev. Lett., 2018, 121: 074801.

[23] R. Imai, N. Kanda, T. Higuchi, K. Konishi, M. Kuwata-Gonokami. Generation of broadband terahertz vortex beams. Opt. Lett., 2014, 39: 3714-3717.

[24] A. A. Sirenko, P. Marsik, C. Bernhard, T. N. Stanislavchuk, V. Kiryukhin, S.-W. Cheong. Terahertz vortex beam as a spectroscopic probe of magnetic excitations. Phys. Rev. Lett., 2019, 122: 237401.

[25] M. Uchida, A. Tonomura. Generation of electron beams carrying orbital angular momentum. Nature, 2010, 464: 737-739.

[26] A. J. Silenko, P. Zhang, L. Zou. Manipulating twisted electron beams. Phys. Rev. Lett., 2017, 119: 243903.

[27] L. Zhang, P. L. Marston. Angular momentum flux of nonparaxial acoustic vortex beams and torques on axisymmetric objects. Phys. Rev. E, 2011, 84: 065601.

[28] N. Jiménez, V. Romero-García, L. M. García-Raffi, F. Camarena, K. Staliunas. Sharp acoustic vortex focusing by Fresnel-spiral zone plates. Appl. Phys. Lett., 2018, 112: 204101.

[29] A. S. Ostrovsky, C. Rickenstorff-Parrao, V. Arrizón. Generation of the ‘perfect’ optical vortex using a liquid-crystal spatial light modulator. Opt. Lett., 2013, 38: 534-536.

[30] C. Brunet, P. Vaity, Y. Messaddeq, S. LaRochelle, L. A. Rusch. Design, fabrication and validation of an OAM fiber supporting 36 states. Opt. Express, 2014, 22: 26117-26127.

[31] M. Chen, M. Mazilu, Y. Arita, E. M. Wright, K. Dholakia. Dynamics of microparticles trapped in a perfect vortex beam. Opt. Lett., 2013, 38: 4919-4922.

[32] R. Paez-Lopez, U. Ruiz, V. Arrizon, R. Ramos-Garcia. Optical manipulation using optimal annular vortices. Opt. Lett., 2016, 41: 4138-4141.

[33] S. G. Reddy, P. Chithrabhanu, P. Vaity, A. Aadhi, S. Prabhakar, R. P. Singh. Non-diffracting speckles of a perfect vortex beam. J. Opt., 2016, 18: 055602.

[34] C. Zhang, C. Min, L. Du, X. C. Yuan. Perfect optical vortex enhanced surface plasmon excitation for plasmonic structured illumination microscopy imaging. Appl. Phys. Lett., 2016, 108: 201601.

[35] N. A. Chaitanya, M. V. Jabir, G. K. Samanta. Efficient nonlinear generation of high power, higher order, ultrafast ‘perfect’ vortices in green. Opt. Lett., 2016, 41: 1348-1351.

[36] M. V. Jabir, N. A. Chaitanya, A. Aadhi, G. K. Samanta. Generation of ‘perfect’ vortex of variable size and its effect in angular spectrum of the down-converted photons. Sci. Rep., 2016, 6: 21877.

[37] A. Banerji, R. P. Singh, D. Banerjee, A. Bandyopadhyay. Generating a perfect quantum optical vortex. Phys. Rev. A, 2016, 94: 053838.

[38] P. Li, Y. Zhang, S. Liu, C. Ma, L. Han, H. Cheng, J. Zhao. Generation of perfect vectorial vortex beams. Opt. Lett., 2016, 41: 2205-2208.

[39] S. Fu, C. Gao, T. Wang, S. Zhang, Y. Zhai. Simultaneous generation of multiple perfect polarization vortices with selective spatial states in various diffraction orders. Opt. Lett., 2016, 41: 5454-5457.

[40] Y. Liu, Y. Ke, J. Zhou, Y. Liu, H. Luo, S. Wen, D. Fan. Generation of perfect vortex and vector beams based on Pancharatnam-Berry phase elements. Sci. Rep., 2017, 7: 44096.

[41] A. A. Kovalev, V. V. Kotlyar, A. P. Porfirev. A highly efficient element for generating elliptic perfect optical vortices. Appl. Phys. Lett., 2017, 110: 261102.

[42] X. Li, H. Ma, C. Yin, J. Tang, H. Li, M. Tang, J. Wang, Y. Tai, X. Li, Y. Wang. Controllable mode transformation in perfect optical vortices. Opt. Express, 2018, 26: 651-662.

[43] Y. Liang, M. Lei, S. Yan, M. Li, Y. Cai, Z. Wang, X. Yu, B. Yao. Rotating of low-refractive-index microparticles with a quasi-perfect optical vortex. Appl. Opt., 2018, 57: 79-84.

[44] Y. Liang, S. Yan, M. He, M. Li, Y. Cai, Z. Wang, M. Lei, B. Yao. Generation of a double-ring perfect optical vortex by the Fourier transform of azimuthally polarized Bessel beams. Opt. Lett., 2019, 44: 1504-1507.

[45] I. Amidror. Fourier spectrum of radially periodic images. J. Opt. Soc. Am. A, 1997, 14: 816-826.

[46] I. Amidror. Fourier spectra of radially periodic images with a non-symmetric radial period. J. Opt. A, 1999, 1: 621-625.

[47] C. Zhou, J. Jia, L. Liu. Circular Dammann grating. Opt. Lett., 2003, 28: 2174-2176.

[48] S. Zhao, P. S. Chung. Design of a circular Dammann grating. Opt. Lett., 2006, 31: 2387-2389.

[49] U. Levy, B. Desiatov, I. Goykhman, T. Nachmias, A. Ohayon, S. E. Meltzer. Design, fabrication, and characterization of circular Dammann gratings based on grayscale lithography. Opt. Lett., 2010, 35: 880-882.

[50] J. Yu, J. Wu, C. Xiang, H. Cao, L. Zhu, C. Zhou. A generalized circular Dammann grating with controllable impulse ring profile. IEEE Photon. Technol. Lett., 2018, 30: 801-804.

[51] L. Niggl, T. Lanzl, M. Maier. Properties of Bessel beams generated by periodic gratings of circular symmetry. J. Opt. Soc. Am. A, 1997, 14: 27-33.

[52] C. Zhou, L. Liu. Numerical study of Dammann array illuminators. Appl. Opt., 1995, 34: 5961-5969.

[53] V. Arrizón, U. Ruiz, D. Sánchez-de-la-Llave, G. Mellado-Villaseñor, A. S. Ostrovsky. Optimum generation of annular vortices using phase diffractive optical elements. Opt. Lett., 2015, 40: 1173-1176.

[54] P. Vaity, L. Rusch. Perfect vortex beam: Fourier transformation of a Bessel beam. Opt. Lett., 2015, 40: 597-600.

[55] J. Pinnell, V. Rodríguez-Fajardo, A. Forbes. How perfect are perfect vortex beams?. Opt. Lett., 2019, 44: 5614-5617.

[56] K. Rong, F. Gan, K. Shi, S. Chu, J. Chen. Configurable integration of on-chip quantum dot lasers and subwavelength plasmonic waveguides. Adv. Mater., 2018, 30: 1706546.

[57] I. Amidror. The Fourier-spectrum of circular sine and cosine gratings with arbitrary radial phase. Opt. Commun., 1998, 149: 127-134.

[58] BatemanH., Tables of Integral Transforms (McGraw-Hill, 1954).

[59] Y. Surrel. Design of algorithms for phase measurements by the use of phase stepping. Appl. Opt., 1996, 35: 51-60.

Junjie Yu, Chaofeng Miao, Jun Wu, Changhe Zhou. Circular Dammann gratings for enhanced control of the ring profile of perfect optical vortices[J]. Photonics Research, 2020, 8(5): 05000648.

引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!