红外与毫米波学报, 2015, 34 (4): 0406, 网络出版: 2015-10-22   

一种宽角度极化不敏感的高可调谐红外超材料完美吸波体

A wide-angle and polarization insensitive highly-tunable infrared metamaterial perfect absorber
作者单位
1 电子科技大学 光电信息学院, 四川 成都610054
2 电子科技大学 微电子与固体电子学院, 四川 成都610054
摘要
提出了一种高度可调、宽角度且具有完美吸收和极化不敏感的超材料吸波体.模拟的结果显示, 在5.8μm处可达到最高吸收率99.9%;通过改变其几何参数, 吸波体的谐振波长在3.4μm到8.6μm的范围内可任意地调节, 且都具有不低于95%的峰值吸收率.在横磁波下, 当入射角度小于80°时, 吸波体的吸收率保持在95%以上;在横电波下, 当入射角小于60°时, 吸收率保持在92%以上.此外, 极化角度在0到90°变化时, 吸波体具有极化不敏感性.
Abstract
A highly-tunable wide-angle metamaterial absorber with perfect absorption and polarization-insensitivity was introduced and investigated. Simulative results show the maximum absorption reaches up to 99.9% at 5.8 μm and the absorber can be tuned arbitrarily in the range of 3.4 μm to 8.6 μm with the absorption remaining above 95% by changing its geometric parameters. The absorber remains absorptivity of over 95% with incident angles below 80° under transverse magnetic(TM) polarization and that of over 92% below 60° under transverse electric(TE) polarization. Furthermore, the absorber is polarization insensitive with polarization angle varying from 0° to 90°.
参考文献

[1] Ginn J, Shelton D, Krenz P, et al. Altering infrared metamaterial performance through metal resonance damping [J]. J. Appl. Phys., 2009, 105(7): 074304.

[2] Schurig D, Mock J J, Justice B J, et al. Metamaterial electromagnetic cloak at microwave frequencies [J]. Science, 2006, 314(5801): 977-980.

[3] Pendry J B. Negative refraction makes a perfect lens [J]. Phys. Rev. Lett., 2000, 85(18): 3966-3969.

[4] Chen H T, O'Hara J F, Azad A K, et al. Experimental demonstration of frequency-agile terahertz metamaterials [J]. Nat. Photonics, 2008, 2(5): 295-298.

[5] Ok J G, Seok Youn H, Kyu Kwak M, et al. Continuous and scalable fabrication of flexible metamaterial films via roll-to-roll nanoimprint process for broadband plasmonic infrared filters [J]. Appl. Phys. Lett., 2012, 101(22): 223102.

[6] Cheng Y Z, Yang H L, Cheng Z Z, et al. Perfect metamaterial absorber based on a split-ring-cross resonator [J]. Appl. Phys. A, 2010, 102(1): 99-103.

[7] Driessen E F C, Dood M J A d. The perfect absorber [J]. Appl. Phys. Lett., 2009, 94(17): 171109.

[8] Maier T, Brueckl H. Multispectral microbolometers for the midinfrared [J]. Opt. Lett, 2010, 35(22): 3766-3768.

[9] Talghader J J, Gawarikar A S, Shea R P. Spectral selectivity in infrared thermal detection [J]. Light: Science & Applications, 2012, 1(8): e24.

[10] Liu N, Mesch M, Weiss T, et al. Infrared perfect absorber and its application as plasmonic sensor [J]. Nano Lett., 2010, 10(7): 2342-2348.

[11] Landy N I, Sajuyigbe S, Mock J J, et al. Perfect Metamaterial Absorber [J]. Phys. Rev. Lett., 2008, 100(20): 207402.

[12] Zhu B, Wang Z B, Yu Z Z, et al. Planar metamaterial microwave absorber for all wave polarizations [J]. Chin. Phys. Lett., 2009, 26(11): 114102.

[13] Hu T, Landy N I, Bingham C M, et al. A metamaterial absorber for the terahertz regime: design, fabrication and characterization [J]. Opt. Express, 2008, 16(10): 7181-7188.

[14] Watts C M, Liu X, Padilla W J. Metamaterial electromagnetic wave absorbers [J]. Adv. Mater., 2012, 24(23): OP98-OP120.

[15] Wang J Q, Fan C Z, Ding P, et al. Tunable broad-band perfect absorber by exciting of multiple plasmon resonances at optical frequency [J]. Opt. Express, 2012, 20(1): 14871-14878.

[16] Pu M B, Hu C G, Wang M, et al. Design principles for infrared wide-angle perfect absorber based on plasmonic structure [J]. Opt. Express, 2011, 19(18): 17413-17420.

[17] Chen S Q, Cheng H, Yang H F, et al. Polarization insensitive and omnidirectional broadband near perfect planar metamaterial absorber in the near infrared regime [J]. Appl. Phys. Lett., 2011, 99(25): 253104.

[18] Liu X L, Tyler T, Starr T, et al. Taming the Blackbody with Infrared Metamaterials as Selective Thermal Emitters [J]. Phys. Rev. Lett., 2011, 107(4): 045901.

[19] Aydin K, Ferry V E, Briggs R M, et al. Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers [J]. Nat. Commun., 2011, 2: 517.

[20] Landy N I, Bingham C M, Tyler T, et al. Design, theory, and measurement of a polarization-insensitive absorber for terahertz imaging [J]. Phys. Rev. B, 2009, 79(12): 125104.

[21] Hu T, Bingham C M, Strikwerda A C, et al. Highly flexible wide angle of incidence terahertz metamaterial absorber: Design, fabrication, and characterization [J]. Phys. Rev. B, 2008, 78(24): 241103.

[22] Cheng H, Chen S Q, Yang H F, et al. A polarization insensitive and wide-angle dual-band nearly perfect absorber in the infrared regime [J]. J. Opt., 2012, 14(8): 085102.

[23] Hao J M, Wang J, Liu X L, et al. High performance optical absorber based on a plasmonic metamaterial [J]. Appl. Phys. Lett., 2010, 96(25): 251104.

[24] Wu C, Neuner B, Shvets G, et al. Large-area wide-angle spectrally selective plasmonic absorber [J]. Phys. Rev. B, 2011, 84(7): 075102.

[25] Yamamoto K, Goericke F, Guedes A, et al. Pyroelectric aluminum nitride micro electromechanical systems infrared sensor with wavelength-selective infrared absorber [J]. Appl. Phys. Lett., 2014, 104(11): 111111.

[26] Bass M, LI G F, Stryland E V, et al. Handbook of Optics [M]. New York, USA: McGraw-Hill Professional, 2010.

[27] Palik E D. Handbook of Optical Constants of Solids [M]. USA: Academic Press, 1998.

[28] Dolling G, Wegener M, Soukoulis C M, et al. Negative-index metamaterial at 780 nm wavelength [J]. Opt. Lett., 2007, 32(1): 53-55.

[29] Dodge M J. Refractive properties of magnesium fluoride [J]. Appl. Opt., 1984, 23(12): 1980-1985.

[30] Dayal G, Ramakrishna S A. Design of highly absorbing metamaterials for infrared frequencies [J]. Opt.Express, 2012, 20(16): 17503-17508.

[31] Lee H M, Wu J C. A wide-angle dual-band infrared perfect absorber based on metal-dielectric-metal split square-ring and square array [J]. J. Phys. D: Appl. Phys., 2012, 45(20): 205101.

[32] Zhu W R, Zhao X P, Gong B Y, et al. Optical metamaterial absorber based on leaf-shaped cells [J]. Appl. Phys. A, 2010, 102(1): 147-151.

[33] Ye Y Q, Jin Y, He S. Omnidirectional, polarization-insensitive and broadband thin absorber in the terahertz regime [J]. J. Opt. Soc. Am. B, 2010, 27(3): 498-504.

侯剑章, 顾德恩, 王涛, 文岐业, 蒋亚东. 一种宽角度极化不敏感的高可调谐红外超材料完美吸波体[J]. 红外与毫米波学报, 2015, 34(4): 0406. HOU Jian-Zhang, GU De-En, WANG Tao, WEN Qi-Ye, JIANG Ya-Dong. A wide-angle and polarization insensitive highly-tunable infrared metamaterial perfect absorber[J]. Journal of Infrared and Millimeter Waves, 2015, 34(4): 0406.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!