光学学报, 2018, 38 (3): 0328005, 网络出版: 2018-03-20   

用于动态应变测量的快速分布式布里渊光纤传感 下载: 1332次特邀综述

Fast Distributed Brillouin Optical Fiber Sensing for Dynamic Strain Measurement
作者单位
1 哈尔滨工业大学可调谐激光技术国家重点实验室, 黑龙江 哈尔滨 150001
2 哈尔滨工业大学土木工程学院, 黑龙江 哈尔滨 150001
引用该论文

周登望, 王本章, 巴德欣, 徐金龙, 徐鹏柏, 姜桃飞, 张东昱, 李惠, 董永康. 用于动态应变测量的快速分布式布里渊光纤传感[J]. 光学学报, 2018, 38(3): 0328005.

Zhou Dengwang, Wang Benzhang, Ba Dexin, Xu Jinlong, Xu Pengbai, Jiang Taofei, Zhang Dongyu, Li Hui, Dong Yongkang. Fast Distributed Brillouin Optical Fiber Sensing for Dynamic Strain Measurement[J]. Acta Optica Sinica, 2018, 38(3): 0328005.

参考文献

[1] Lee B. Review of the present status of optical fiber sensors[J]. Optical Fiber Technology, 2003, 9(2): 57-79.

    Lee B. Review of the present status of optical fiber sensors[J]. Optical Fiber Technology, 2003, 9(2): 57-79.

[2] Kurashima T, Horiguchi T, Tateda M. Distributed-temperature sensing using stimulated Brillouin scattering in optical silica fibers[J]. Optics Letters, 1990, 15(18): 1038-1040.

    Kurashima T, Horiguchi T, Tateda M. Distributed-temperature sensing using stimulated Brillouin scattering in optical silica fibers[J]. Optics Letters, 1990, 15(18): 1038-1040.

[3] Ba D X, Wang B Z, Zhou D W, et al. Distributed measurement of dynamic strain based on multi-slope assisted fast BOTDA[J]. Optics Express, 2016, 24(9): 9781-9793.

    Ba D X, Wang B Z, Zhou D W, et al. Distributed measurement of dynamic strain based on multi-slope assisted fast BOTDA[J]. Optics Express, 2016, 24(9): 9781-9793.

[4] Bao X Y, Chen L. Recent progress in brillouin scattering based fiber sensors[J]. Sensors, 2011, 11(4): 4152-4187.

    Bao X Y, Chen L. Recent progress in brillouin scattering based fiber sensors[J]. Sensors, 2011, 11(4): 4152-4187.

[5] HotateK. Recent achievements in BOCDA/BOCDR[C]//Proceedings of 2014 IEEE Sensors, 2014: 142- 145.

    HotateK. Recent achievements in BOCDA/BOCDR[C]//Proceedings of 2014 IEEE Sensors, 2014: 142- 145.

[6] Boyd RW. Nonlinear optics[M]. 3rd ed. Pittsburgh: Academic Press, 2008: 429- 471.

    Boyd RW. Nonlinear optics[M]. 3rd ed. Pittsburgh: Academic Press, 2008: 429- 471.

[7] Zadok A, Antman Y, Primerov N, et al. Random-access distributed fiber sensing[J]. Laser & Photonics Reviews, 2012, 6(5): L1-L5.

    Zadok A, Antman Y, Primerov N, et al. Random-access distributed fiber sensing[J]. Laser & Photonics Reviews, 2012, 6(5): L1-L5.

[8] Bao X Y, Webb D J, Jackson D A. 22-km distributed temperature sensor using Brillouin gain in an optical fiber[J]. Optics Letters, 1993, 18(7): 552-554.

    Bao X Y, Webb D J, Jackson D A. 22-km distributed temperature sensor using Brillouin gain in an optical fiber[J]. Optics Letters, 1993, 18(7): 552-554.

[9] Dong Y K, Zhang H Y, Chen L, et al. 2cm spatial-resolution and 2 km range Brillouin optical fiber sensor using a transient differential pulse pair[J]. Applied Optics, 2012, 51(9): 1229-1235.

    Dong Y K, Zhang H Y, Chen L, et al. 2cm spatial-resolution and 2 km range Brillouin optical fiber sensor using a transient differential pulse pair[J]. Applied Optics, 2012, 51(9): 1229-1235.

[10] Xu P B, Dong Y K, Zhang J W, et al. Bend-insensitive distributed sensing in singlemode-multimode-singlemode optical fiber structure by using Brillouin optical time-domain analysis[J]. Optics Express, 2015, 23(17): 22714-22722.

    Xu P B, Dong Y K, Zhang J W, et al. Bend-insensitive distributed sensing in singlemode-multimode-singlemode optical fiber structure by using Brillouin optical time-domain analysis[J]. Optics Express, 2015, 23(17): 22714-22722.

[11] Dong Y K, Xu P B, Zhang H Y, et al. Characterization of evolution of mode coupling in a graded-index polymer optical fiber by using Brillouin optical time-domain analysis[J]. Optics Express, 2014, 22(22): 26510-26516.

    Dong Y K, Xu P B, Zhang H Y, et al. Characterization of evolution of mode coupling in a graded-index polymer optical fiber by using Brillouin optical time-domain analysis[J]. Optics Express, 2014, 22(22): 26510-26516.

[12] Dong Y K, Ba D X, Jiang T F, et al. High-spatial-resolution fast BOTDA for dynamic strain measurement based on differential double-pulse and second-order sideband of modulation[J]. IEEE Photonics Journal, 2013, 5(3): 2600407.

    Dong Y K, Ba D X, Jiang T F, et al. High-spatial-resolution fast BOTDA for dynamic strain measurement based on differential double-pulse and second-order sideband of modulation[J]. IEEE Photonics Journal, 2013, 5(3): 2600407.

[13] Li W H, Bao X Y, Li Y, et al. Differential pulse-width pair BOTDA for high spatial resolution sensing[J]. Optics Express, 2008, 16(26): 21616-21625.

    Li W H, Bao X Y, Li Y, et al. Differential pulse-width pair BOTDA for high spatial resolution sensing[J]. Optics Express, 2008, 16(26): 21616-21625.

[14] Dong Y K, Chen L, Bao X Y. Extending the sensing range of Brillouin optical time-domain analysis combining frequency-division multiplexing and in-line EDFAs[J]. Journal of Lightwave Technology, 2012, 30(8): 1161-1167.

    Dong Y K, Chen L, Bao X Y. Extending the sensing range of Brillouin optical time-domain analysis combining frequency-division multiplexing and in-line EDFAs[J]. Journal of Lightwave Technology, 2012, 30(8): 1161-1167.

[15] Ma Z, Zhang M J, Liu Y, et al. Incoherent Brillouin optical time-domain reflectometry with random state correlated Brillouin spectrum[J]. IEEE Photonics Journal, 2015, 7(4): 1-7.

    Ma Z, Zhang M J, Liu Y, et al. Incoherent Brillouin optical time-domain reflectometry with random state correlated Brillouin spectrum[J]. IEEE Photonics Journal, 2015, 7(4): 1-7.

[16] Wang F, Zhan W W, Zhang X P, et al. Improvement of spatial resolution for BOTDR by iterative subdivision method[J]. Journal of Lightwave Technology, 2013, 31(23): 3663-3667.

    Wang F, Zhan W W, Zhang X P, et al. Improvement of spatial resolution for BOTDR by iterative subdivision method[J]. Journal of Lightwave Technology, 2013, 31(23): 3663-3667.

[17] Li B, Luo L Q, Yu Y F, et al. Dynamic strain measurement using small gain stimulated Brillouin scattering in STFT-BOTDR[J]. IEEE Sensors Journal, 2017, 17(9): 2718-2724.

    Li B, Luo L Q, Yu Y F, et al. Dynamic strain measurement using small gain stimulated Brillouin scattering in STFT-BOTDR[J]. IEEE Sensors Journal, 2017, 17(9): 2718-2724.

[18] YamauchiT, HotateK. Distributed and dynamic strain measurement by BOCDA with time-division pump-probe generation scheme[C]. Conference on Lasers and Electro-Optics, 2004: CWA57.

    YamauchiT, HotateK. Distributed and dynamic strain measurement by BOCDA with time-division pump-probe generation scheme[C]. Conference on Lasers and Electro-Optics, 2004: CWA57.

[19] Preter E, Ba D X, London Y, et al. High-resolution Brillouin optical correlation domain analysis with no spectral scanning[J]. Optics Express, 2016, 24(24): 27253-27267.

    Preter E, Ba D X, London Y, et al. High-resolution Brillouin optical correlation domain analysis with no spectral scanning[J]. Optics Express, 2016, 24(24): 27253-27267.

[20] Hotate K. Fiber distributed Brillouin sensing with optical correlation domain techniques[J]. Optical Fiber Technology, 2013, 19(6): 700-719.

    Hotate K. Fiber distributed Brillouin sensing with optical correlation domain techniques[J]. Optical Fiber Technology, 2013, 19(6): 700-719.

[21] Ong S SL, HotateK. Dynamic strain measurement at 50 Hz using a Brillouin optical correlation domain analysis based on fiber optic sensor[C]. 5 th Pacific Rim Conference on Lasers and Electro-Optics , 2003: 7993564.

    Ong S SL, HotateK. Dynamic strain measurement at 50 Hz using a Brillouin optical correlation domain analysis based on fiber optic sensor[C]. 5 th Pacific Rim Conference on Lasers and Electro-Optics , 2003: 7993564.

[22] Hotate K, Tanaka M. Distributed fiber Brillouin strain sensing with 1-cm spatial resolution by correlation-based continuous-wave technique[J]. IEEE Photonics Technology Letters, 2002, 14(2): 179-181.

    Hotate K, Tanaka M. Distributed fiber Brillouin strain sensing with 1-cm spatial resolution by correlation-based continuous-wave technique[J]. IEEE Photonics Technology Letters, 2002, 14(2): 179-181.

[23] Mizuno Y, Hayashi N, Fukuda H, et al. Ultrahigh-speed distributed Brillouin reflectometry[J]. Light Science & Applications, 2016, 5(12): e16184.

    Mizuno Y, Hayashi N, Fukuda H, et al. Ultrahigh-speed distributed Brillouin reflectometry[J]. Light Science & Applications, 2016, 5(12): e16184.

[24] Lee H, Hayashi N, Mizuno Y, et al. Slope-assisted Brillouin optical correlation-domain reflectometry: proof of concept[J]. IEEE Photonics Journal, 2016, 8(3): 1-7.

    Lee H, Hayashi N, Mizuno Y, et al. Slope-assisted Brillouin optical correlation-domain reflectometry: proof of concept[J]. IEEE Photonics Journal, 2016, 8(3): 1-7.

[25] Mizuno Y, Zou W W, He Z Y, et al. Proposal of Brillouin optical correlation-domain reflectometry (BOCDR)[J]. Optics Express, 2008, 16(16): 12148-12153.

    Mizuno Y, Zou W W, He Z Y, et al. Proposal of Brillouin optical correlation-domain reflectometry (BOCDR)[J]. Optics Express, 2008, 16(16): 12148-12153.

[26] Bernini R, Minardo A, Zeni L. Distributed sensing at centimeter-scale spatial resolution by BOFDA: measurements and signal processing[J]. IEEE Photonics Journal, 2012, 4(1): 48-56.

    Bernini R, Minardo A, Zeni L. Distributed sensing at centimeter-scale spatial resolution by BOFDA: measurements and signal processing[J]. IEEE Photonics Journal, 2012, 4(1): 48-56.

[27] Garus D, Krebber K, Schliep F, et al. Distributed sensing technique based on Brillouin optical-fiber frequency-domain analysis[J]. Optics Letters, 1996, 21(17): 1402-1404.

    Garus D, Krebber K, Schliep F, et al. Distributed sensing technique based on Brillouin optical-fiber frequency-domain analysis[J]. Optics Letters, 1996, 21(17): 1402-1404.

[28] Minardo A, Bernini R, Ruiz-Lombera R, et al. Proposal of Brillouin optical frequency-domain reflectometry (BOFDR)[J]. Optics Express, 2016, 24(26): 29994-30001.

    Minardo A, Bernini R, Ruiz-Lombera R, et al. Proposal of Brillouin optical frequency-domain reflectometry (BOFDR)[J]. Optics Express, 2016, 24(26): 29994-30001.

[29] Xu P B, Dong Y K, Zhou D W, et al. 1200 ℃ high-temperature distributed optical fiber sensing using Brillouin optical time domain analysis[J]. Applied Optics, 2016, 55(21): 5471-5478.

    Xu P B, Dong Y K, Zhou D W, et al. 1200 ℃ high-temperature distributed optical fiber sensing using Brillouin optical time domain analysis[J]. Applied Optics, 2016, 55(21): 5471-5478.

[30] Agrawal GP. Nonlinear fiber optics[M]. 4th ed. Amsterdam: Elsevier Academic Press, 2007.

    Agrawal GP. Nonlinear fiber optics[M]. 4th ed. Amsterdam: Elsevier Academic Press, 2007.

[31] Dong YK, Zhang HY, Zhou DP, et al. Characterization of Brillouin gratings in optical fibers and their applications[M]. London: Intech Publisher, 2012: 115- 136.

    Dong YK, Zhang HY, Zhou DP, et al. Characterization of Brillouin gratings in optical fibers and their applications[M]. London: Intech Publisher, 2012: 115- 136.

[32] Zhou D W, Dong Y K, Wang B Z, et al. Slope-assisted BOTDA based on vector SBS and frequency-agile technique for wide-strain-range dynamic measurements[J]. Optics Express, 2017, 25(3): 1889-1902.

    Zhou D W, Dong Y K, Wang B Z, et al. Slope-assisted BOTDA based on vector SBS and frequency-agile technique for wide-strain-range dynamic measurements[J]. Optics Express, 2017, 25(3): 1889-1902.

[33] Diakaridia S, Pan Y, Xu P B, et al. Detecting cm-scale hot spot over 24-km-long single-mode fiber by using differential pulse pair BOTDA based on double-peak spectrum[J]. Optics Express, 2017, 25(15): 17727-17736.

    Diakaridia S, Pan Y, Xu P B, et al. Detecting cm-scale hot spot over 24-km-long single-mode fiber by using differential pulse pair BOTDA based on double-peak spectrum[J]. Optics Express, 2017, 25(15): 17727-17736.

[34] Bao X Y, Wan Y D, Zou L F, et al. Effect of optical phase on a distributed Brillouin sensor at centimeter spatial resolution[J]. Optics Letters, 2005, 30(8): 827-829.

    Bao X Y, Wan Y D, Zou L F, et al. Effect of optical phase on a distributed Brillouin sensor at centimeter spatial resolution[J]. Optics Letters, 2005, 30(8): 827-829.

[35] 王本章. 基于光学捷变频的动态分布式布里渊光纤传感技术研究[D]. 哈尔滨: 哈尔滨工业大学, 2016.

    王本章. 基于光学捷变频的动态分布式布里渊光纤传感技术研究[D]. 哈尔滨: 哈尔滨工业大学, 2016.

    Wang BZ. Dynamic distributed Brillouin optical fiber sensing based on optical frequency-agile technology[D]. Harbin: Harbin Institute of Technology, 2016.

    Wang BZ. Dynamic distributed Brillouin optical fiber sensing based on optical frequency-agile technology[D]. Harbin: Harbin Institute of Technology, 2016.

[36] López-GilA, Domínguez-LópezA, Martín-LópezS, et al. Simple method for the elimination of polarization noise in BOTDA using balanced detection of orthogonally polarized Stokes and anti-Stokes probe sidebands[C]. 23 rd International Conference on Optical Fiber Sensors , 2014, 9157: 91573U.

    López-GilA, Domínguez-LópezA, Martín-LópezS, et al. Simple method for the elimination of polarization noise in BOTDA using balanced detection of orthogonally polarized Stokes and anti-Stokes probe sidebands[C]. 23 rd International Conference on Optical Fiber Sensors , 2014, 9157: 91573U.

[37] López-Gil A, Domínguez-López A, Martín-López S, et al. Simple method for the elimination of polarization noise in BOTDA using balanced detection and orthogonal probe sidebands[J]. Journal of Lightwave Technology, 2015, 33(12): 2605-2610.

    López-Gil A, Domínguez-López A, Martín-López S, et al. Simple method for the elimination of polarization noise in BOTDA using balanced detection and orthogonal probe sidebands[J]. Journal of Lightwave Technology, 2015, 33(12): 2605-2610.

[38] Domínguez-López A, López-Gil A, Martín-López S, et al. Signal-to-noise ratio improvement in BOTDA using balanced detection[J]. Journal of Lightwave Technology, 2014, 26(4): 338-341.

    Domínguez-López A, López-Gil A, Martín-López S, et al. Signal-to-noise ratio improvement in BOTDA using balanced detection[J]. Journal of Lightwave Technology, 2014, 26(4): 338-341.

[39] UrricelquiJ, López-FernandinoF, SaguesM, et al. Polarization diversity for Brillouin distributed fiber sensors based on a double orthogonal pump[C]. 23 rd International Conference on Optical Fiber Sensors , 2014, 9157: 91576A.

    UrricelquiJ, López-FernandinoF, SaguesM, et al. Polarization diversity for Brillouin distributed fiber sensors based on a double orthogonal pump[C]. 23 rd International Conference on Optical Fiber Sensors , 2014, 9157: 91576A.

[40] Peled Y, Motil A, Tur M. Fast Brillouin optical time domain analysis for dynamic sensing[J]. Optics Express, 2012, 20(8): 8584-8591.

    Peled Y, Motil A, Tur M. Fast Brillouin optical time domain analysis for dynamic sensing[J]. Optics Express, 2012, 20(8): 8584-8591.

[41] Dong Y K, Bao X Y, Li W H. Differential Brillouin gain for improving the temperature accuracy and spatial resolution in a long-distance distributed fiber sensor[J]. Applied Optics, 2009, 48(22): 4297-4301.

    Dong Y K, Bao X Y, Li W H. Differential Brillouin gain for improving the temperature accuracy and spatial resolution in a long-distance distributed fiber sensor[J]. Applied Optics, 2009, 48(22): 4297-4301.

[42] Ba D X, Zhou D W, Wang B Z, et al. Dynamic distributed Brillouin optical fiber sensing based on dual-modulation by combining single frequency modulation and frequency-agility modulation[J]. IEEE Photonics Journal, 2017, 9(3): 1-8.

    Ba D X, Zhou D W, Wang B Z, et al. Dynamic distributed Brillouin optical fiber sensing based on dual-modulation by combining single frequency modulation and frequency-agility modulation[J]. IEEE Photonics Journal, 2017, 9(3): 1-8.

[43] Bernini R, Minardo A, Zeni L. Dynamic strain measurement in optical fibers by stimulated Brillouin scattering[J]. Optics Letters, 2009, 34(17): 2613-2615.

    Bernini R, Minardo A, Zeni L. Dynamic strain measurement in optical fibers by stimulated Brillouin scattering[J]. Optics Letters, 2009, 34(17): 2613-2615.

[44] Peled Y, Motil A, Yaron L, et al. Slope-assisted fast distributed sensing in optical fibers with arbitrary Brillouin profile[J]. Optics Express, 2011, 19(21): 19845-19854.

    Peled Y, Motil A, Yaron L, et al. Slope-assisted fast distributed sensing in optical fibers with arbitrary Brillouin profile[J]. Optics Express, 2011, 19(21): 19845-19854.

[45] Urricelqui J, Zornoza A, Sagues M, et al. Dynamic BOTDA measurements based on Brillouin phase-shift and RF demodulation[J]. Optics Express, 2012, 20(24): 26942-26949.

    Urricelqui J, Zornoza A, Sagues M, et al. Dynamic BOTDA measurements based on Brillouin phase-shift and RF demodulation[J]. Optics Express, 2012, 20(24): 26942-26949.

[46] Tu X B, Sun Q, Chen W, et al. Vector Brillouin optical time-domain analysis with heterodyne detection and IQ demodulation algorithm[J]. IEEE Photonics Journal, 2014, 6(2): 1-8.

    Tu X B, Sun Q, Chen W, et al. Vector Brillouin optical time-domain analysis with heterodyne detection and IQ demodulation algorithm[J]. IEEE Photonics Journal, 2014, 6(2): 1-8.

[47] Zhou D W, Dong Y K, Wang B Z, et al. Single-shot BOTDA based on optical chirp chain probe wave for distributed ultra-fast measurement[J]. Light: Science & Applications, 2017.

    Zhou D W, Dong Y K, Wang B Z, et al. Single-shot BOTDA based on optical chirp chain probe wave for distributed ultra-fast measurement[J]. Light: Science & Applications, 2017.

[48] Chaube P, Colpitts B G, Jagannathan D, et al. Distributed fiber-optic sensor for dynamic strain measurement[J]. IEEE Sensors Journal, 2008, 8(7): 1067-1072.

    Chaube P, Colpitts B G, Jagannathan D, et al. Distributed fiber-optic sensor for dynamic strain measurement[J]. IEEE Sensors Journal, 2008, 8(7): 1067-1072.

[49] Voskoboinik A, Yilmaz O F, Willner A W, et al. Sweep-free distributed Brillouin time-domain analyzer (SF-BOTDA)[J]. Optics Express, 2011, 19(26): B842-B847.

    Voskoboinik A, Yilmaz O F, Willner A W, et al. Sweep-free distributed Brillouin time-domain analyzer (SF-BOTDA)[J]. Optics Express, 2011, 19(26): B842-B847.

[50] Voskoboinik A, Willner A E, Tur M. Extending the dynamic range of sweep-free Brillouin optical time-domain analyzer[J]. Journal of Lightwave Technology, 2015, 33(14): 2978-2985.

    Voskoboinik A, Willner A E, Tur M. Extending the dynamic range of sweep-free Brillouin optical time-domain analyzer[J]. Journal of Lightwave Technology, 2015, 33(14): 2978-2985.

[51] Fang J, Xu P B, Dong Y K, et al. Single-shot distributed Brillouin optical time domain analyzer[J]. Optics Express, 2017, 25(13): 15188-15198.

    Fang J, Xu P B, Dong Y K, et al. Single-shot distributed Brillouin optical time domain analyzer[J]. Optics Express, 2017, 25(13): 15188-15198.

周登望, 王本章, 巴德欣, 徐金龙, 徐鹏柏, 姜桃飞, 张东昱, 李惠, 董永康. 用于动态应变测量的快速分布式布里渊光纤传感[J]. 光学学报, 2018, 38(3): 0328005. Zhou Dengwang, Wang Benzhang, Ba Dexin, Xu Jinlong, Xu Pengbai, Jiang Taofei, Zhang Dongyu, Li Hui, Dong Yongkang. Fast Distributed Brillouin Optical Fiber Sensing for Dynamic Strain Measurement[J]. Acta Optica Sinica, 2018, 38(3): 0328005.

本文已被 7 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!