红外与激光工程, 2018, 47 (11): 1106005, 网络出版: 2019-01-10  

圆柱铁氧体微裂纹的激光扫描热成像检测

Detection of microcrack in cylinder ferrite components based on scanning laser thermography
作者单位
中国计量大学 工业与商贸计量技术研究所, 浙江 杭州 310018
摘要
针对用激光局部加热试样引起的横向热流检测裂纹, 对低热导率材料表面的微小裂纹成像信噪比较低的问题, 提出基于相邻热信号比较的圆柱铁氧体表面微裂纹检测算法。基于几何模型重构运动的圆周表面各点热信号, 以激光扫描方向相邻点热信号的欧氏距离作为特征进行成像。仿真分析确定热信号裁剪区间、参考信号位置等算法参数。对6个具有5~35 μm宽度自然裂纹的样品进行实验, 结果表明, 在线激光2.66 mm/s的扫描速度下, 裂纹成像信噪比相比常规方法提高1~2倍, 可清晰成像出裂纹的形状。
Abstract
Aiming at laser heating the specimen locally to detect cracks, and the signal-to-noise ratios fell when surface cracks in material with low thermal conductivity were imaged, a detection algorithm of surface microcrack which compared the adjacent thermal signals in cylinder ferrite components was proposed. The thermal signal at each position on moving cylinder was reconstructed based on geometric model, then the Euclidean distance along the laser scanning direction was used as a feature to image. The relative algorithm parameters about cutting area of thermal signal and the position of reference signal were confirmed by simulation analysis. The specimen were test, which had 5-35 μm wide crack on 6 cylinder ferrite surface. The results show that this approach can enhance the signal-to-noise ratio by 1 to 2 times compared with conventional approach at the line-laser scanning speed of 2.66 mm/s, and it can image the shape of cracks evidently.
参考文献

[1] 闫会朋, 杨正伟, 田干,等. 基于涡流热成像的铁磁材料近表面微裂纹检测[J]. 红外与激光工程, 2017, 46(3): 0317001.

    Yan Huipeng, Yang Zhengwei, Tian Gan, et al. Micro crack detection near surface of ferromagnetic materials based on eddy current thermography[J]. Infrared and Laser Engineering, 2017, 46(3): 0317001. (in Chinese)

[2] 南钢洋, 王启武, 张振振, 等. 基于激光超声方法的钢轨缺陷检测(英文)[J]. 红外与激光工程, 2017, 46(1): 0106006.

    Nan Gangyang, Wang Qiwu, Zhang Zhenzhen, et al. Rail steel flaw inspection based on laser ultrasonic method[J]. Infrared and Laser Engineering, 2017, 46(1): 0106006. (in Chinese)

[3] Burrows S E, Dixon S, Pickering S G, et al. Thermographic detection of surface breaking defects using a scanning laser source[J]. NDT & E International, 2011, 44(7): 589-596.

[4] Schlichting J, Ziegler M, Maierhofer C, et al. Flying laser spot thermography for the fast detection of surface breaking cracks[C]//18th World Conference on Nondestructive Testing, 2012.

[5] Kubiak E J. Infrared detection of fatigue cracks and other near-surface defects[J]. Applied Optics, 1968, 7(7): 1743-1748.

[6] An Y K, Yang J, Hwang S, et al. Line laser lock-in thermography for instantaneous imaging of cracks in semiconductor chips[J]. Optics & Lasers in Engineering, 2015, 73(1): 128-136.

[7] Li T, Almond D P, Rees D A S, et al. Crack imaging by pulsed laser spot thermography[C]//Journal of Physics Conference Series, 2010.

[8] Fedala Y, Streza M, Sepulveda F, et al. Infrared lock-in thermography crack localization on metallic surfaces for industrial diagnosis[J]. Journal of Nondestructive Evaluation, 2013, 33(3): 970-972.

[9] Gruss C, Balageas D. Theoretical and experimental applications of the flying spot camera[C]//Conference on Quantitative Infrared Thermography, 1992.

[10] Hermosillalara S, Joubert P Y, Placko D. Identification of physical effects in flying spot photothermal non-destructive testing[J]. European Physical Journal Applied Physics, 2003, 24(3): 223-229.

[11] Li T, Almond D P, Rees D A S. Crack imaging by scanning laser-line thermography and laser-spot thermography[J]. Measurement Science & Technology, 2011, 22(3): 315-322.

[12] Lugin S. Detection of hidden defects by lateral thermal flows[J]. NDT & E International, 2013, 56(2): 48-55.

[13] 王晓宁, 侯德鑫, 叶树亮. 基于激光热成像的铁氧体裂纹检测[J]. 激光与红外, 2015, 45(11): 1298-1303.

    Wang Xiaoning, Hou Dexin, Ye Shuliang. Crack detection of ferrite based on laser spot thermography[J]. Laser & Infrared. 2015, 45(11): 1298-1303. (in Chinese)

[14] Wang Xiaona, Wang Xiaoning, Hou Dexin, et al. Surface crack imaging based on delayed temperature difference at symmetric points by laser spot thermography[J]. Instrumentation, 2014, 1(2): 30-37.

[15] Wang Y Q, Kuo P K, Favro L D, et al. Flying laser spot thermal wave IR imaging of horizontal and vertical cracks[J]. Review of Progress in Quantitative Nondestructive Evaluation, 1990, 9: 511-516.

[16] Hidalgogato R, Andrés J R, Lópezhiguera J M, et al. Quantification by signal to noise ratio of active infrared thermography data processing techniques[J]. Optics & Photonics Journal, 2013, 3(4): 20-26.

[17] Schlichting J, Maierhofer C, Kreutzbruck M. Defect sizing by local excitation thermography[J]. Quantitative Infrared Thermography Journal, 2011, 8(1): 51-63.

王晓娜, 姚行洲, 侯德鑫, 叶树亮. 圆柱铁氧体微裂纹的激光扫描热成像检测[J]. 红外与激光工程, 2018, 47(11): 1106005. Wang Xiaona, Yao Xingzhou, Hou Dexin, Ye Shuliang. Detection of microcrack in cylinder ferrite components based on scanning laser thermography[J]. Infrared and Laser Engineering, 2018, 47(11): 1106005.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!