中国激光, 2012, 39 (s1): s115001, 网络出版: 2012-05-28  

晶体位错处理对X射线衍射性能的影响

Influence on X-ray Diffraction by Crystal′s Surface Dislocation Treatment
作者单位
1 中国工程物理研究院流体物理研究所冲击波物理与爆轰物理重点实验室, 四川 绵阳 621900
2 重庆工商大学重庆市发展信息管理工程技术研究中心, 重庆 400067
3 重庆大学光电技术及系统教育部重点实验室, 重庆 400030
摘要
为提高晶体对波长为0.1~20 nm的X射线的衍射效率,通过特殊工艺对特定晶体表面进行位错处理。将云母、α-石英和LiF晶体劈成80 mm×10 mm的晶体薄片,其中LiF晶体厚度研磨到1 mm,其余三种晶体厚度为0.2 mm。将LiF晶体加热到400 ℃,然后用椭圆型折弯机进行多次弯曲,自然冷却降到室温,使晶格发生位错现象。在波长为0.154 nm的Cu靶X射线衍射仪上进行衍射试验,经晶体后利用成像板或X射线CCD获得衍射谱线,其中Mica球弯晶获得多级衍射谱线,经过表面处理的LiF晶体获取的X射线光子数比未处理的高2倍。结果表明晶体表面经过位错处理后提高了衍射效率,更适合X射线诊断研究。
Abstract
To improve the crystal X-ray diffraction efficiency in wavelength range of 0.1~20 nm, it is processed that crystal surface is dealt with specific technique. Those crystals, such as mica、α-quartz and LiF, are cleaved slice of 80 mm×10 mm, with LiF crystal thickness of 1 mm, other crystals thickness of 0.2 mm. LiF crystal is heated up to about 400 ℃, then bended by curved-machine time after time and cooled to room temperature by natural, resulting in a so-called dislocation phenomenon which leads to enhance diffractive efficiency. The experience is carried on a Cu target X-ray diffractometer (XRD) with wavelength of 0.154 nm. Muti-diffractive phenomenon happens on mica spherical surface crystal. Double intensity is achieved on processed LiF crystal surface compared to original crystal. The experimental results show that it is more suitable to diagnose soft X-ray after treating the crystal surface for improving dislocation.
参考文献

[1] 王淦昌. 惯性约束核聚变[M]. 石家庄: 河北教育出版社, 2004

    Wang Ganchang. Inertial Confinement Fusion[M]. Shijiazhuang: Hebei Education Press, 2004

[2] Suman Bagchi, P. Prem Kiran, K. Yang et al.. Bright, low debris, ultrashort hard X-ray table top source using carbon nanotubes[J]. Phys. Plasmas, 2011, 18(1): 014502

[3] 范品忠, E. Fill, 关铁堂. 软X射线晶体谱仪[J]. 光学学报, 1995, 15(7): 923~926

    Fan Pinzhong, E. Fill, Guan Tietang. Soft X-ray crystal spectrograph[J]. Acta Optica Sinica, 1995, 15(7): 923~926

[4] 王洪建, 肖沙里, 施军 等. 金丝Z箍缩等离子体X射线椭圆弯晶谱仪研究[J]. 中国激光, 2010, 37(3): 685~688

    Wang Hongjian, Xiao Shali, Shi Jun et al.. Elliptical crystal spectrometer researched for Z-pinch plasma X-ray by using Au-wire arrays[J]. Chinese J. Lasers, 2010, 37(3): 685~688

[5] B. L. Henke, P. A. Jaanimagi. Two-channel elliptical analyzer spectrograph for absolute time-resolving time-integrating spectromtry of pulsed X-ray sources in the 100~10000 eV region[J]. Rev. Sci. Instrum., 1985, 56(8): 1537~1545

[6] Shali Xiao, Hongjian Wang, Jun Shi et al.. High resolution X-ray spherically bent crystal spectrometer for laser-produced plasma diagnostics[J]. Chin. Opt. Lett., 2009, 7(1): 92~94

[7] T. A. Shelkovenko, S. A. Pikuz, D. A. Hammer. Use of spherically bent crystals to diagnose wire array z pinches[J]. Rev. Sci. Instrum., 2004, 75(10): 3681~3683

[8] 王洪建, 肖沙里, 施军 等. Z箍缩等离子体X射线凸晶谱仪[J]. 强激光与粒子束, 2011, 23(2): 403~406

    Wang Hongjian, Xiao Shali, Shi Jun et al.. Convex crystal spectrometer for Z-pinch plasma X-ray diagnosis[J]. High Power Laser and Particle Beams, 2011, 23(2): 403~406

[9] 阳庆国, 李泽仁, 彭其先 等. 圆柱面和圆锥面弯晶谱仪的理论计算及设计[J]. 光学学报, 2009, 29(2): 382~387

    Yang Qingguo, Li Zeren, Peng Qixian et al.. Theoretical calculation and design for cylindrical and conical bent crystal spectrograph[J]. Acta Optica Sinica, 2009, 29(2): 382~387

[10] E. J. Clothiaux, E. Oks, J. Weinheimer et al.. Measurement of the polarization of line profiles in the X-ray region and the diagnostic possibilities[J]. J. Quant. Spectrosc. Radiat. Transfer, 1997, 58(4-6): 531~536

[11] Hitoki Yoneda, Noboru Hasegawa, Shu-ichi Kawana et al.. Large anisotropy of the electron distribution function in the high-density plasma produced by an ultrashort-pulse UV laser[J]. Phys. Rev. E, 1997, 56(1): 998~991

[12] B. L. Henke, E. M. Gullikson, J. C. Davis. X-ray interactions: photoabsorption, scattering, transmission, and reflection at e=50-30000 ev, z=1-92[J]. At. Data & Nucl. Data Tables, 1993, 54(2): 181~342

[13] 梁栋材. X射线晶体学基础[M]. 北京: 科学出版社, 1991. 355~356

    Liang Dongcai. Fundamentals of X-Ray Crystallography[M]. Beijing: Science Press, 1991. 355~356

[14] 孙景文. 高温等离子体X射线谱学[M]. 北京: 国防工业出版社, 2003

    Sun Jingwen. High Temperature Plasma X-ray Spectroscopy[M]. Beijing: National Defence Industry Press, 2003

[15] 王洪建. 激光等离子体极化光谱诊断研究[D]. 重庆: 重庆大学, 2010

    Wang Hongjian. Polarization Spectral Diagnosing in Laser-Produced Plasma[D]. Chongqing: Chongqing University, 2010

[16] 王洪建, 肖沙里, 施军 等. 激光等离子体球面晶体光谱成像[J]. 强激光与粒子束, 2008, 20(2): 251~254

    Wang Hongjian, Xiao Shali, Shi Jun et al.. Spherically bent crystal spectroscopy in laser-produced plasma[J]. High Power Laser and Particle Beams, 2008, 20(2): 251~254

王洪建, 李泽仁, 肖沙里, 叶雁, 阳庆国. 晶体位错处理对X射线衍射性能的影响[J]. 中国激光, 2012, 39(s1): s115001. Wang Hongjian, Li Zeren, Xiao Shali, Ye Yan, Yang Qingguo. Influence on X-ray Diffraction by Crystal′s Surface Dislocation Treatment[J]. Chinese Journal of Lasers, 2012, 39(s1): s115001.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!