光学 精密工程, 2016, 24 (12): 2916, 网络出版: 2017-01-23   

高性能光学合成石英玻璃的制备和应用

Preparation and application of high-performance synthetic optical fused silica glass
作者单位
中国建筑材料科学研究总院 石英与特种玻璃研究院, 北京 100024
摘要
介绍了制备光学合成石英玻璃的常用工艺方法, 包括化学气相沉积、等离子化学气相沉积和间接合成法等; 给出了不同光学石英玻璃使用的原材料、它们的特点及其在不同领域的应用综述了该项技术在国内外的发展现状。比较了上述制备方法的优缺点, 其中立式化学气相沉积工艺是目前最成熟的商业化工艺, 可用于制备直径达Φ600 mm以上、光学均匀性优于2×10-6、抗激光损伤阈值达30 J/cm2@355 nm的大尺寸合成石英玻璃; 等离子化学气相沉积工艺可制备内在质量优异、羟基含量≤5×10-6、光谱透过率T190-4000 nm≥80%的全光谱透过石英玻璃; 间接合成法可制备光吸收系数小于1×10-6/cm@1064 nm、羟基含量≤1×10-6、光谱透过率T157-4000 nm≥80%的石英玻璃, 而且易于掺杂及控制缺陷, 进而制备各类掺杂特殊功能的石英玻璃。文章最后指出: 上述制备工艺各有优缺点, 应根据高端光电技术领域的应用需求采取适当的制备工艺。
Abstract
Several kinds of important preparation processes of synthetic optical silica glass are elaborated, such as Chemical Vapor Deposition (CVD), Plasma Chemical Vapor Deposition (PCVD) and indirect synthetic method. The raw materials and characteristics for the optical silica glass, as well their applications in different fields are given. Then, developing situations and tendencies of these preparation processes are reviewed. It compares their advantages and shortcomings in detail. Among them, the CVD is the most mature and commercial technology. It prepares the synthetic silica glass with a diameter of 600 mm or beyond, its optical uniformity is better than 2×10-6, and the laser damage threshold is 30 J/cm2@355 nm. The PCVD processes synthetic silica glass of full-spectrum transmittance. It shows excellent internal quality, its hydroxyl content is less than 5×10-6, and the spectral transmittance of T190-4000 nm is more than 80%. Furthermore, the indirect synthetic method prepares the synthetic silica glass with an absorption coefficient less than 1×10-6/cm@1064 nm, its hydroxyl content is less than 1×10-6, and the spectral transmittance of T157-4000 nm is more than 80%. Moreover, the indirect synthetic method is beneficial to doping and controlling the defects of synthetic silica glass, which achieves all kinds of special functional silica glass. It suggests that each of these preparation processes of synthetic optical silica glass has its own advantages and disadvantages, so proper preparation processes could be adopted for different application requirements of modern high-end photoelectron technological fields.
参考文献

[1] 隋梅, 孙元成, 宋学富, 等. CVD合成石英玻璃的结构均匀性研究 [J]. 武汉理工大学学报, 2010, 32(22): 106-110.

    SUI M, SUN Y CH, SONG X F, et al.. Research of structural stress of CVD synthetic silica glass [J]. Journal of Wuhan University of Technology, 2010, 32(22): 106-110. (in Chinese)

[2] FLOYD E M, MAHENDRA K M, MERRILL F S. Apparatus for minimizing air infiltration in the production of fused silica glass: United States Patent, 6314766[P]. 2001-11-03.

[3] JOHN E M. Boule oscillation patterns in methods of producing fused silica glass: United States Patent, 5696038[P]. 1997-12-09.

[4] JOHN E M. Method and containment vessel for producing fused silica glass and the fused silica blank produced: United States Patent, US5698484[P]. 1997-12-16.

[5] PAUL M S. Furnace for producing fused silica glass: United States Patent, 5951730[P]. 1999-09-14.

[6] CAMPBELL J H, HAWLEY F R, STOLZ C J, et al.. NIF optical materials and fabrication technologies: An overview [J]. SPIE, 2004,5341:UCRL-CONF-155471.

[7] WANG Y F, XIANG Z K, SUI M, et al.. Silica glass manufactured by vertical CVD technology [C]. 2005′ International Symposium on Glass in Connection with the Annual Meeting of the International Commission on Glass, Shanghai, 2005:SB2-3.

[8] 顾真安, 王玉芬, 向在奎, 等. 立式四氯化硅汽相沉积合成石英玻璃的方法:中国专利,03122969.7[P]. 2003-11-26.

    GU ZH A, WANG Y F, XIANG Z K, et al.. The method of synthetic silica slass by vertical chemical vapor deposition of silicon tetrachloride: China Patent, 03122969.7[P]. 2003-11-26. (in Chinese)

[9] 向在奎, 王玉芬, 饶传东, 等. 合成石英玻璃的生产工艺及缺陷形成分析 [J]. 建筑玻璃与工业玻璃, 2009, 8: 19-22.

    XIANG Z K, WANG Y F, RAO CH D, et al.. The study of production process and the pechanism of pefects formation for synthetic silica glass [J]. Architectural and Industrial Glass, 2009, 8: 19-22. (in Chinese)

[10] 饶传东, 徐驰, 王蕾, 等. 高速合成石英玻璃生产用氧气带料燃烧器:中国专利, 200820123700.X [P].2009-08-12.

    RAO CH D, XU CH, WANG L, et al.. The burner for high-speed production of synthetic silica glass by oxygen carrier raw material: China Patent, 200820123700.X [P]. 2009-08-12. (in Chinese)

[11] 王玉芬, 聂兰舰, 向在奎, 等. 高均匀合成石英玻璃砣的制备方法: 中国专利,201510420201.1 [P].2015-09-23.

    WANG Y F, NIE L J, XIANG Z K, et al.. The preparation method for synthetic silica glass ingot of high uniformity: China Patent, 201510420201.1 [P].2015-09-23. (in Chinese)

[12] 王玉芬, 聂兰舰, 向在奎, 等. 制备合成石英玻璃砣的沉积炉:中国专利,201510420175.2 [P].2015-09-23.

    WANG Y F, NIE L J, XIANG Z K, et al.. The deposition furnace for preparation of synthetic silica glass ingot: China Patent, 201510420175.2 [P].2015-09-23. (in Chinese)

[13] 王慧. 中国建材总院大尺寸石英玻璃跨入“2.0”时代 [N]. 科技日报, 2015-3-9(6).

    WANG H. The large size silica glass of china building materials academy into the "2.0" era [N]. Science and Technology Daily, 2015-3-9(6). (in Chinese)

[14] 王慧, 向在奎. 千淘万漉“石英人”[N]. 中国建材报, 2015-6-17(1).

    WANG H, XIANG Z K. The carefully selected outstanding "Quartz Men" [N]. China Building Materials Daily, 2015-6-17(1). (in Chinese)

[15] WANG H, XIANG Z K, GAO ZH X, et al.. Study on the laser damage character of fused silica by different fusing atmosphere and heat treatment process [C]. Pacific Rim Laser Damage 2015: Optical Materials for High-Power Lasers, Shanghai, 2015, 9532: 95321T-1-95321T-10.

[16] 王慧, 王玉芬, 向在奎, 等. 熔石英玻璃激光损伤阈值初步研究 [J]. 硅酸盐通报, 2015, 34(S): 212-216.

    WANG H, WANG Y F, XIANG Z K, et al.. Experimental research of the laser induced damage character of the fused silica [J]. Bulletin the Chinese Ceramic Society, 2015, 34(S): 212-216. (in Chinese)

[17] SHAO ZH F, JIA Y N, WANG L, et al.. Analysis of the surface shape effect on optical homogeneity measurement of large calibre optical materials [J]. Key Engineering Materials, 2015, 633: 480-484.

[18] SONG X F, SUN Y CH, ZHONG H, et al.. Synthesis of silica glass by plasma chemical vapor deposition method [J]. Journal of the Chinese Ceramic Society, 2008, 36: 531-534.

[19] 葛世名. 石英玻璃的发展简史 [J]. 硅酸盐通报, 1982, 5: 51-60.

    GE SH M. The brief history of quartz glass [J]. Bulletin the Chinese Ceramic Society, 1982, 5: 51-60. (in Chinese)

[20] 王玉芬, 宋学富, 孙元成, 等. 超纯石英玻璃制备工艺研究 [J]. 武汉理工大学学报, 2010, 32(22): 98-101.

    WANG Y F, SONG X F, SUN Y CH, et al.. Research on preparation of super purity silica glass [J]. Journal of Wuhan University of Technology, 2010, 32(22): 98-101. (in Chinese)

[21] WANG Y F, SONG X F, SUN Y CH. Research on output power of plasma for PCVD synthesizing silica glass [J]. Advanced Materials Research, 2011, 291-294: 3009-3012.

[22] 王玉芬, 钟海, 宋学富, 等. 高频等离子气相合成石英玻璃的方法: 中国专利,200510076613.4 [P].2005-11-23.

    WANG Y F, ZHONG H, SONG X F, et al.. The method of synthetic silica glass by high-frequency plasma chemical vapor deposition: China Patent, 200510076613.4 [P].2005-11-23. (in Chinese)

[23] 王玉芬, 宋学富, 钟海, 等. 一种供给高频等离子火焰用空气的净化方法: 中国专利,200610114474.4 [P].2007-06-06.

    WANG Y F, SONG X F, ZHONG H, et al.. The method of air purification for supplying high frequency plasma flame: China Patent, 200610114474.4 [P].2007-06-06. (in Chinese)

[24] SANTOS J S, ONO E, FUJIWARA E, et al.. Control of optical properties of silica glass synthesized by VAD method for photonic components [J]. Optical Materials, 2011, 33(12): 1879-1883.

[25] CHARLENC M S, LISA A M. Properties and production of F-doped silica glass [J]. Journal of Fluorine Chemistry, 2003, 122: 81-86.

[26] TOMOYUKI M, YASUHIRO O, DAVID M W. The lithographic lens: its history and evolution [J]. SPIE, 2006, 6154(3): 1-14.

[27] ZHANG J, PETER R H, CHRISTIAN L, et al.. 157-nm laser-induced modification of fused-silica glasses [C]. Laser Applications in Micorelectronic and Optoelectronic Manufacturing VI, San Jose, 2001, 4274: 125-132.

[28] KOICHI K, YOSHIAKI I, MASANORI O, et al.. UV-VUV laser induced phenomena in SiO2 glass [J]. Nuclear Instruments and Methods in Physics Research Section B, 2004, 218: 323-331.

[29] CHARLENE M S, LISA A M. Formation of absorption bands in F-doped silica under excimer laser exposure [C]. Optical Microlithography XIV, Santa Clara, 2001, 4346(2): 1080-1087.

[30] MASANORI O, SINYA K, TAISUKE M, et al.. Fluorine doped silica glass fiber for deep ultraviolet light [J]. Journal of Non-Crystalline Solids, 2004, 349: 133-138.

[31] HEINZ F, JUERGEN R. Method for producing synthetic quartz glass: United States Patent, 8973407 [P].2015-03-10.

[32] RICHARD B C, ALAN M, LAN G S. Manufacture of synthetic silica glass: United States Patent, 8959957 [P].2015-02-24.

[33] ANKE S, RENE S, MARTIN T, et al.. Process for producing a quartz glass cylinder and also support for carrying out the process : United States Patent, 8783069 [P].2014-07-22.

[34] RAYMOND D G, BRIAN L H, JOHN E M. Method for forming fused silica glass using multiple burners: United States Patent, 8230701 [P].2012-07-31.

[35] STEVEN R B, JAMES G F, DANIEL R S, et al.. Fused silica blank and method of forming a fused silica plate from the same: United States Patent, 8110277 [P].2012-02-07.

[36] LISA A M, CHARLENE M S. F-doped silica glass and process of making same: United States Patent, 7964522 [P].2011-06-21.

[37] BRIAN L H, KENNETH E H, JOHN E L. Fused silica glass and method for making the same: United States Patent, 7994083 [P]. 2011-08-09.

[38] MAKOTO Y. Porous glass base material manufacturing method and gas flow rate control apparatus: United States Patent, 8919152 [P].2014-12-30.

[39] MAKOTO Y. Porous glass preform production apparatus: United States Patent, 8656743 [P].2014-02-25.

[40] HISATOSHI O, KAZUO S, OSAMU S. Manufacture of synthetic quartz glass ingot and synthetic quartz glass member: United States Patent, 8596095 [P].2013-12-03.

[41] PUSHKAR T, BOEK H. Experimental and theoretical studies of flame hydrolysis deposition process for making glasses for optical planar devices [J]. Journal of Non-Crystalline Solids, 2003, 317: 275-289.

[42] PUSHKAR T. Doping of silica during sintering [J]. Journal of Non-Crystalline Solids, 2005, 351: 1466-1472.

[43] MAIDA S, YAMADA M, OTSUKA H, et al.. Method of producing fluorine-containing synthetic quartz glass: United States Patent, 6990836 [P].2006-01-31.

[44] KOJI M, OTSUKA H, KAZUO S. Method of producing synthetic quartz glass: United States Patent, 7159418 [P].2007-01-09.

[45] YOSHIAKI I, SHIN'YA K, KEIGO H, et al.. Synthetic silica glass for vacuum ultraviolet light [R]. Tokyo: Asahi Glass Co., Ltd., 2003, 53: 31-35.

[46] YOKOKAWA T, ENOMOTO T, YAMAZAKI T, et al.. Analysis on viscous flow of VAD silica glass during heat forming [J]. Sei Technical Review, 2009, 68: 11-15.

[47] SUPRASIL 3001 and 3002 [EB/OL]. http://www. heraeus.com/media/media/hqs/doc_hps/products_and_solutions_8/optics/Suprasil_3001_3002_EN.pdf.

[48] SANTOS J S, ONO E, LUTKUS A A S, et al.. UV transparent high homogeneity silica glass produced by flame aerosol VAD synthesis [C]. Global Roadmap for Ceramics-ICC2 Proceeding, Verona, Italy, 2008:1-P-027(CD-ROM).

[49] SANTOS J S, ONO E, SUZUKI C K. Effect of the nanostructure control on the novel optical properties of silica photonic glass synthesized by VAD method [J]. Materials Science Forum, 2010, 636-637: 361-368.

[50] SANTOS J S, ONO E, FUJIWARA E, et al.. Control of optical properties of silica glass synthesized by VAD method for photonic components [J]. Optical Materials, 2011, 33(12): 1879-1883.

[51] SANTOS J S, GUSKEN E, ONO E, et al.. EXAFS and XANES study of annealed VAD silica glass [R]. Photon Factory Activity Report, Tokyo, 2007: 168.

[52] SANTOS J S, ONO E, FUJIWARA E, et al.. Ultra-low birefringence silica glass synthesized by VAD method for photonic components for UV photolithography [C]. 11th International Conference on Advanced Materials, Rio de Janeiro Brazil, 2009.

[53] TARCIO P M, ONO E, FUJIWARA E, et al.. A method to synthesize SiO2-TiO2 glasses based on the synergy between VAD and ALD techniques: study of TiO2 doping profile along radial direction [J]. Optical Materials, 2011, 33(12): 1938-1942.

[54] BRADFORD G A, KENNETH E H, MOORE L A, et al.. Method for producing titania-doped fused silica glass: United States Patent,8047023B2[P]. 2011-11-01.

[55] SHIGERU M, HISATOSHI O. Titania and sulfur co-doped quartz glass member and making method: United States Patent, 8629071B2 [P].2014-01-14.

[56] 聂兰舰, 宋学富, 向在奎, 等. 一种间接合成石英玻璃的方法及其专用设备以及一种石英玻璃:中国专利,201210053634.4 [P].2012-07-18.NIE L J, SONG X F, XIANG Z K, et al.. The indirect method of synthetic silica glass, special equipment and silica glass: China Patent,201210053634.4 [P]. 2012-07-18. (in Chinese)

[57] 聂兰舰, 宋学富, 向在奎, 等. 一种气相沉积合成炉: 中国专利,201210053634.4 [P].2012-11-21.NIE L J, SONG X F, XIANG Z K, et al.. The deposition furnace of chemical vapor deposition and synthesis: China Patent, 201210053634.4 [P]. 2012-11-21. (in Chinese)

[58] 隋梅, 王玉芬, 聂兰舰, 等. SiCl4流量及沉积距离对SiO2疏松体微粒特性的影响 [C]. 2011年全国玻璃科学技术年会, 杭州, 2011: 62.SUI M, WANG Y F, NIE L J, et al.. Effect of SiCl4 flow rate and deposition space on properties of SiO2 soot body [C]. 2011′ National Glass Science and Technology Symposium, Hangzhou, 2011: 62. (in Chinese)

[59] 聂兰舰, 王玉芬, 饶传东, 等. 低密度SiO2疏松体的孔隙结构特性研究 [C]. 第十八届全国复合材料学术会议, 厦门, 2014, K: 475-482.

    NIE L J, WANG Y F, RAO CH D, et al.. Study on pore structure of low density SiO2 soot body [C]. Eighteenth National Conference on Composite Materials Proceedings, Xiamen, 2014, K: 475-482. (in Chinese)

聂兰舰, 王玉芬, 向在奎, 王蕾, 王慧. 高性能光学合成石英玻璃的制备和应用[J]. 光学 精密工程, 2016, 24(12): 2916. NIE Lan-jian, WANG Yu-fen, XIANG Zai-kui, WANG Lei, WANG Hui. Preparation and application of high-performance synthetic optical fused silica glass[J]. Optics and Precision Engineering, 2016, 24(12): 2916.

本文已被 2 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!