光谱学与光谱分析, 2018, 38 (9): 2860, 网络出版: 2018-10-02   

用于固体火箭羽焰真温测量的宽量程多光谱高温计

A Wide-Range Multi-Spectral Pyrometer for True Temperature Measurement of Solid Rocket Engine Plume
作者单位
1 烟台大学机电汽车工程学院, 山东 烟台 264005
2 凉山矿业股份有限公司, 四川 会理 615141
3 哈尔滨工业大学电气工程及自动化学院, 黑龙江 哈尔滨 150001
摘要
现有的多光谱高温计的测量下限均大于1 173 K(900 ℃), 不适用于新型火箭羽焰真温测量范围的要求(900~2 700 K)。 为了解决现有的多光谱高温计无法测量1 173 K以下羽焰真温的问题, 研制了用于固体火箭发动机羽焰真温测量的宽量程多光谱高温计。 该多光谱高温计采用了并联光电探测器阵列相邻像元的方法, 并且创建了基于对数函数的900~1 173 K温区的温度标定方法, 从而拓宽了高温计的温度测量范围。 针对某型号固体火箭发动机羽焰的三个目标点进行了现场测量, 实验结果验证了该高温计的有效性。
Abstract
The lower limit of the existing multi-spectral pyrometer is higher than 1 173 K (900 ℃), which is not suitable for the measurement of the true temperature range of a new rocket plume (900~2 700 K). A wide-range multi-spectral pyrometer for true temperature measurement of the solid rocket engine plume is developed to solve the problem that existing multi-spectral pyrometers cannot measure the plume true temperature when the temperature is lower than 1 173 K. The pyrometer uses a parallel connection method of the photoelectric detectors adjacent pixels, and proposes a temperature calibration method for 900~1 173 K region on the basis of the logarithmic function, so as to broaden the range of the measuring temperature pyrometer. The field measurement is carried out on the three targets of a solid rocket engine plume and the experimental results verify the validity of the pyrometer.
参考文献

[1] Zhao W, Zhu S, Li Y, et al. Journal of Thermophysics and Heat Transfer, 2004, 18(3): 404.

[2] Wen C D. International Journal of Heat and Mass Transfer, 2010, 53(9-10): 2035.

[3] Khan M A, Allemand C, Eagar T W. Review of Scientific Instruments, 1991, 62(2): 403.

[4] Petter H, Fredrik S, Anna-Karin C, et al. Measurement Science and Technology, 2014, 25(2): 025011.

[5] Wang H, Chen D, Wang G, et al. Measurement, 2013, 46(10): 4023.

[6] Fu T, Tan P, Pang C, et al. Review of Scientific Instruments, 2011, 82(6): 064902.

[7] Xing J, Rana R S, Gu W. Opt Express, 2016, 24(17): 19185.

[8] Bakhir L P, Levashenko G I, Tamanovich V V. Combust Explos Shock Waves, 1980, 16(2): 181.

[9] Pluchino A B, Masturzo D E. AIAA Journal, 1981, 19(9): 1234.

[10] Kalman J, Allen D, Glumac N, et al. Journal of Thermophysics and Heat Transfer, 2014, 29(1): 74.

[11] Fu T, Liu J, Duan M, et al. Review of Scientific Instruments, 2014, 85(4): 044901.

[12] DAI Jing-min, LU Xiao-dong, CHU Zai-xiang, et al(戴景民, 卢小冬, 褚载祥, 等). Journal of Infrared and Millimeter Waves(红外与毫米波学), 2000, 19(1): 64.

[13] Liang M, Sun B, Sun X, et al. International Journal of Thermophysics, 2017, 38(3): 35.

[14] FAN Chuan-xin, WANG Peng(范传新, 王 鹏). Journal of Astronautic Metrology and Measurement(宇航计测技术), 2006, 26(4): 18.

[15] Burt J M, Boyd I D. AIAA Journal, 2007, 45(12): 2872.

王昌辉, 梁美, 梁磊, 孙晓刚. 用于固体火箭羽焰真温测量的宽量程多光谱高温计[J]. 光谱学与光谱分析, 2018, 38(9): 2860. WANG Chang-hui, LIANG Mei, LIANG Lei, SUN Xiao-gang. A Wide-Range Multi-Spectral Pyrometer for True Temperature Measurement of Solid Rocket Engine Plume[J]. Spectroscopy and Spectral Analysis, 2018, 38(9): 2860.

本文已被 2 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!