光谱学与光谱分析, 2019, 39 (5): 1329, 网络出版: 2019-05-13  

中国原子光谱技术及应用发展近况

Recent Technical and Application Development of Atomic Spectrometry in China
作者单位
厦门大学化学化工学院, 谱学分析与仪器教育部重点实验室, 福建 厦门 361005
摘要
原子光谱(atomic spectrometry, AS)技术作为分析领域一个重要的组成部分, 是尖端科学快速发展的助推器。 随着国家对高新技术的愈加重视, 国内的分析检测技术也在飞速发展, 原子光谱技术作的发展则成为了极其重要的推动力。 对中国原子光谱近4年(2015年—2018年)的研究成果与应用进展做了一个综述, 内容主要分为六大部分: 原子发射光谱(atomic emission spectrometry, AES)包括电感耦合等离子体发射光谱(inductively coupled plasma optical emission spectrometry, ICP-OES), 辉光放电发射光谱(glow discharge optical emission spectrometry, GD-OES), 介质阻挡放电发射光谱(dielectric barrier discharge optical emission spectrometry, DBD-OES)和激光诱导击穿光谱(laser induced breakdown spectrometry, LIBS); 原子吸收光谱(atomic absorption spectrometry, AAS)包括火焰原子化吸收光谱(flame atomic absorption spectrometry, FAAS), 石墨炉原子化吸收光谱(graphite furnace atomic absorption spectrometry, GFAAS)和氢化物发生原子吸收光谱(hydride generation atomic absorption spectrometry, HGAAS); 原子荧光光谱(atomic fluorescence spectrometry, AFS); X射线荧光光谱(X-ray fluorescence spectrometry, XRF); 元素质谱(elemental mass spectrometry, EMS)包括电感耦合等离子体质谱(inductively coupled plasma mass spectrometry, ICP-MS), 辉光放电质谱(glow discharge mass spectrometry, GDMS), 激光电离源质谱(laser ionization mass spectrometry, LIMS)和原子探针层析成像(atom probe tomography, APT); 原子光谱分析的联用技术。 主要关注了各个技术及各种联用技术在仪器设备、 检测方法、 检测性能上的突破和创新, 并简要介绍它们在电子、 冶金、 地质、 环境、 制药、 食品、 生命科学等多种领域中的应用。
Abstract
As an indispensable part of the analytical technique, atomic spectrometry is showing great importance for promoting scientific and technological progress, especially in environmental science, energy technology, food science, biotechnology, and materials science. With our country’s increasing emphasis on high-tech, domestic analytical and detection technologies are advancing rapidly, and the development of atomic spectroscopy has become extremely important. In this review, a brief summary on the researches and applications of atomic spectrometry in China for year 2015—2018 has been given. The main contents include: Atomic Emission Spectrometry (AES), consisting of Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES), Glow Discharge Optical Emission Spectrometry(GD-OES), Dielectric Barrier Discharge Optical Emission Spectrometry (DBD-OES) and Laser Induced Breakdown Spectrometry (LIBS); Atomic Absorption Spectrometry (AAS), consisting of Flame Atomic Absorption Spectrometry (FAAS), Graphite Furnace Atomic Absorption Spectrometry (GFAAS) and Hydride Generation Atomic Absorption Spectrometry (HGAAS); Atomic Fluorescence Spectrometry (AFS); X-ray Fluorescence Spectrometry (XRF); Elemental Mass Spectrometry (EMS), consisting of Inductively Coupled Plasma Mass Spectrometry(ICP-MS), Glow Discharge Mass Spectrometry (GDMS), Laser Ionization Mass Spectrometry (LIMS) and Atom Probe Tomography (APT); hyphenated techniques of atomic spectroscopy. We focus on the breakthroughs and innovations in technology, instrumentation, detection methods, and performance with various technologies and various combinations. Related applications in electronics, metallurgy, geology, environment, pharmaceuticals, food, life sciences and other fields are introduced briefly.
参考文献

[1] Liu Xiaolan, Chen Beibei, Zhang Lin, et al. Anal. Chem., 2015, 87(17): 8949.

[2] WANG Fan, HE Man, CHEN Bei-bei, et al(王 樊, 何 蔓, 陈贝贝, 等). Chinese Journal of Analytical Chemistry(分析化学), 2015, 43(9): 1313.

[3] Zhang Yanan, Zhong Cheng, Zhang Qiangying, et al. RSC Adv., 2015, 5(8): 5996.

[4] Deng Biyang, Xu Xiangshu, Xiao Yan, et al. Anal. Chim. Acta, 2015, 853: 179.

[5] Fan Qishun, Ma Yunqi, Cheng Huaide, et al. Sediment. Geol., 2015, 322: 34.

[6] Ma Yunqi, Peng Zhangkuang, Yang Jian, et al. Talanta, 2017, 175: 250.

[7] QIN Zhan-jie, ZHANG Xiang-ru, PENG Zhang-kuang, et al(秦占杰, 张湘如, 彭章旷, 等). Chinese Journal of Analytical Chemistry(分析化学), 2018, 46(1): 48.

[8] Chen Songqing, Qin Xingxiu, Gu Weixi, et al. Talanta, 2016, 161: 325.

[9] GONG Ai-qin, ZHU Xia-shi, JIN Kai-kai(龚爱琴, 朱霞石, 金凯凯). Chemical Research and Application(化学研究与应用), 2016, 28(12): 1680.

[10] Gu Weixi, Zhu Xiashi, Microchim. Acta, 2017, 184(11): 4279.

[11] Zheng Chengbin, Hu Ligang, Hou Xiandeng, et al. Anal. Chem., 2018, 90(6): 3683.

[12] Huang Chuchu, Li Qing, Mo Jiamei, et al. Anal. Chem., 2016, 88(23): 11559.

[13] Mo Jiamei, Li Qing, Guo Xiaohong, et al. Anal. Chem., 2017, 89(19): 10353.

[14] Liu Xing, Zhu Zhenli, He Dong, et al. J. Anal. At. Spectrom., 2016, 31(5): 1089.

[15] Meng Fanying, Li Xuemei, Duan Yixiang. Sci. Rep., 2014, 4: 4803.

[16] Meng Fanying, Duan Yixiang. Anal. Chem., 2015, 87(3): 1882.

[17] Jiang Xue, Xu Xinliang, Hou Xiandeng, et al. J. Anal. At. Spectrom., 2016, 31(7): 1423.

[18] Leng Anqin, Lin Yao, Tian Yunfei, et al. Anal. Chem., 2016, 89(1): 703.

[19] Lu Quanfang, Yang Shuxiu, Sun Duixiong, et al. Spectrochim. Acta, Part B, 2016, 125: 136.

[20] Yu Jie, Yang Shuxiu, Sun Duixiong, et al. Microchem. J., 2016, 128: 325.

[21] Yu Jie, Zhang Xiaomin, Lu Quanfang, et al. Spectrochim. Acta, Part B, 2018, 145: 64.

[22] Yu Jie, Yang Shuxiu, Lu Quanfang, et al. Talanta, 2017, 164: 216.

[23] Yu Jie, Zhang Xiaomin, Lu Quanfang, et al. Talanta, 2017, 175: 150.

[24] Yang Ting, Gao Dongxue, Yu Yongliang, et al. Talanta, 2016, 146: 603.

[25] Cai Yi, Zhang Yajie, Wu Defu, et al. Anal. Chem., 2016, 88(8): 4192.

[26] Jiang Xue, Hu Zhangmei, He Hengwei, et al. Microchem. J., 2016, 129: 16.

[27] Luo Yijing, Yang Yuan, Lin Yao, et al. Anal. Chem., 2018, 90(3): 1547.

[28] Leng Anqin, Tian Yunfei, Wang Mingxuan, et al. Chin. Chem. Lett., 2017, 28(2): 189.

[29] Wu Zhongchen, Jiang Jie, Li Na. Talanta, 2015, 144: 734.

[30] Li Na, Wu Zhongchen, Wang Yingying, et al. Anal. Chem., 2017, 89(4): 2205.

[31] Hou Zongyu, Wang Zhe, Yuan Tingbi, et al. J. Anal. At. Spectrom., 2016, 31(3): 722.

[32] Li Tianqi, Sheta Sahar, Hou Zongyu, et al. Appl. Opt., 2018, 57(21): 6120.

[33] Tian Ye, Sokolova Ekaterina B, Zheng Ronger, et al. Spectrochim. Acta, Part B, 2015, 114: 7.

[34] Menneveux Jérme, Wang Fang, Lu Shan, et al. Spectrochim. Acta, Part B, 2015, 109: 9.

[35] Bocková Jana, Tian Ye, Yin Hualiang, et al. Appl. Spectrosc., 2017, 71(8): 1750.

[36] Wang Xu, Wei Yin, Lin Qingyu, et al. Anal. Chem., 2015, 87(11): 5577.

[37] Xu Tao, Liu Jie, Shi Qi, et al. Spectrochim. Acta, Part B, 2016, 115: 31.

[38] Shi Linli, Lin Qingyu, Duan Yixiang. Talanta, 2015, 144: 1370.

[39] Xie Shichen, Xu Tao, Niu Guanghui, et al. J. Anal. At. Spectrom., 2018, 33(6): 975-985

[40] Liu Yingzu, He Yong, Wang Zhihua, et al. Combust. Flame, 2018, 189: 77-86

[41] Huang Jianwei, Dong Meirong, Lu Shengzi, et al. J. Anal. At. Spectrom., 2018, 33(5): 720.

[42] Wang Xiaohua, Liang Zhisen, Meng Yifan, et al. Spectrochim. Acta, Part B, 2018, 141: 1.

[43] Feng Shouai, Liu Hong, Huang Jiangfeng, et al. J. Braz. Chem. Soc., 2018, 29(1): 125.

[44] Yin Q H, Zhu D M, Yang D Z, et al. J. Appl. Spectrosc., 2018, 84(6): 1084.

[45] Wang Meng, Wu Lan, Hu Qiufen, et al. Environ. Sci. Pollut. Res., 2018, 25(9): 8340.

[46] Yin Qinhong, Zhu Yanqin, Ju Shuangqiao, et al. Res. Chem. Intermed., 2016, 42(5): 4985.

[47] Ju Shuangqiao, Liu Mousheng, Yang Yaling. Anal. Lett., 2016, 49(4): 511.

[48] CHEN Qing-hui, WAN Yao-yu, LI Qian, et al(陈清慧, 万瑶宇, 李 倩, 等). Spectroscopy and Spectral Analysis(光谱学与光谱分析), 2016, 36(10): 3351.

[49] CHEN Zhuo, SU Yu-qing, SONG Shan, et al(陈 琢, 苏宇青, 宋 珊, 等). Spectroscopy and Spectral Analysis(光谱学与光谱分析), 2018, 38(8): 2595.

[50] Zeng Chujie, Ji Liang, Zhou Chunqin, et al. Microchem. J., 2015, 119: 1.

[51] Wang Yang, Chen Huanhuan, Tang Jie, et al. Food Chem., 2015, 181: 191.

[52] Xu Damao, Zhang Jiaquan, Yan Bo, et al. Environ. Sci. Pollut. Res., 2018, 25(36): 36223.

[53] Chen Yaojin, Feng Sichao, Huang Yongming, et al. Talanta, 2015, 137: 25.

[54] Liu Liwei, Zheng Huaili, Xu Bincheng, et al. Talanta, 2018, 179: 86.

[55] Zhong Wensi, Ren Ting, Zhao Lijiao. J. Food Drug. Anal., 2016, 24(1): 46.

[56] Zhang Yanan, Chen Beibei, Wu Shaowei, et al. Talanta, 2016, 154: 474.

[57] Zhang Si, Chen Beibei, He Man, et al. Microchem. J., 2018, 139: 380.

[58] Zhao Bingshan, He Man, Chen Beibei, et al. Spectrochim. Acta, Part B, 2018, 143: 32.

[59] Zhao Bingshan, He Man, Chen Beibei, et al. Talanta, 2018, 183: 268.

[60] Zhao Bingshan, He Man, Chen Beibei, et al. Spectrochim. Acta, Part B, 2015, 107: 115.

[61] Tan Qing, Pan Yi, Liu Lu, et al. Microchem. J., 2019, 144: 495.

[62] Chen Piaopiao, Wu Peng, Zhang Yuxiang, et al. Anal. Chem., 2016, 88(24): 12386.

[63] Chen Piaopiao, Yang Peng, Zhou Rongxing, et al. Chem. Commun., 2018, 54(37): 4696.

[64] Luo Jin, Xu Fujian, Hu Jing, et al. Microchem. J., 2017, 133: 441.

[65] Zou Zhirong, Xu Fujian, Tian Yunfei, et al. J. Anal. At. Spectrom., 2018, (33): 1217.

[66] Zou Zhirong, Tian Yunfei, Zeng Wen, et al. Microchem. J., 2018, 140: 189.

[67] Feng Sichao, Yuan Dongxing, Huang Yongming, et al. Anal. Chim. Acta, 2017, 963: 53.

[68] Mao Xuefei, Qi Yuehan, Huang Junwei, et al. Anal. Chem., 2016, 88(7): 4147.

[69] Zhou Shubin, Yuan Zhaoxian, Cheng Qiuming, et al. Environ. Pollut., 2018, 243: 1325.

[70] NIE Li-xing, ZHANG Ye, ZHU Li, et al.(聂黎行, 张 烨, 朱 俐, 等). Spectroscopy and Spectral Analysis(光谱学与光谱分析), 2017, 37(10): 3225.

[71] Zhang Yan, Zhang Xinlei, Jia Wenbao, et al. Appl. Spectrosc., 2016, 70(2): 272.

[72] Shan Qing, Zhang Xinlei, Zhang Yan, et al. Spectrosc. Lett., 2016, 49(3): 188.

[73] Jia Wenbao, Zhang Yan, Gu Chenguang, et al. Sci. China: Technol. Sci., 2014, 57(1): 39.

[74] He Qian, Xing Zhi, Zhang Sichun, et al. J. Anal. At. Spectrom., 2015, 30(9): 1997.

[75] He Qian, Wang Jia, Mo Yuxiang, et al. Talanta, 2017, 165: 39.

[76] He Qian, Xing Zhi, Wei Chao, et al. Chem. Commun., 2016, 52(69): 10501.

[77] He Qian, Wu Jiajia, Zhang Sichun, et al. J. Anal. At. Spectrom., 2018, 33(4): 563.

[78] ZHU Yan, CHEN Min, QU Hai-yun, et al(朱 燕, 陈 敏, 屈海云, 等). Chinese Journal of Analytical Chemistry(分析化学), 2015(1): 151.

[79] Zhang Guoxia, Wang Zheng, Li Qing, et al. Talanta, 2016, 154: 486.

[80] Li Qing, Wang Zheng, Chen Yirui, et al. Metallomics, 2017, 9(8): 1150.

[81] Zhang Guoxia, Li Qing, Zhu Yan, et al. Spectrochim. Acta, Part B, 2018, 145: 51.

[82] Xiao Guangyang, Chen Beibei, He Man, et al. Spectrochim. Acta, Part B, 2017, 138: 90.

[83] Yang Bin, Chen Beibei, He Man, et al. Anal. Chem., 2018, 90(3): 2355.

[84] Li Xiaoting, Chen Beibei, He Man, et al. Talanta, 2018, 176: 40.

[85] Yang Bin, Zhang Yuan, Chen Beibei, et al. Biosens. Bioelectron., 2017, 96: 77.

[86] Yu Xiaoxiao, Chen Beibei, He Man, et al. Talanta, 2018, 179: 279.

[87] Yan Ping, He Man, Chen Beibei, et al. Spectrochim. Acta, Part B, 2017, 136: 73.

[88] Yu Xiaoxiao, Chen Beibei, He Man, et al. Anal. Chem., 2018, 90(16): 10078.

[89] Wang Chao, He Man, Chen Beibei, et al. Talanta, 2018.

[90] Zhang Jing, Chen Beibei, Wang Han, et al. Anal. Chem., 2017, 89(12): 6878.

[91] Wang Han, Chen Beibei, He Man, et al. Anal. Chem., 2017, 89(9): 4931.

[92] Chen Shizhong, Zhu Shengping, Lu Dengbo. Food Chem., 2015, 169: 156.

[93] Luo Tao, Hu Zhaochu, Zhang Wen, et al. Anal. Chem., 2018, 90(15): 9016.

[94] Feng Yantong, Zhang Wen, Hu Zhaochu, et al. J. Anal. At. Spectrom., 2018, 33(12): 2172.

[95] Zhang Wen, Hu Zhaochu, Liu Yongsheng, et al. Anal. Chim. Acta, 2017, 983: 149.

[96] YANG Wen-wu, SHI Guang-yu, SHANG Qi, et al(杨文武, 史光宇, 商 琦, 等). Spectroscopy and Spectral Analysis(光谱学与光谱分析), 2017, 37(7): 2192.

[97] Zhang Chenxi, Hu Zhaochu, Zhang Wen, et al. Anal. Chem., 2016, 88(20): 10088.

[98] Yan Neng, Zhu Zhenli, Jin Lanlan, et al. Anal. Chem., 2015, 87(12): 6079.

[99] Liang Yong, Jiang Xin, Tang Nannan, et al. Anal. Bioanal. Chem., 2015, 407(9): 2373.

[100] YANG Meng, LI Ming, XUE Jiao, et al(杨 萌, 李 铭, 薛 娇, 等). Chinese Journal of Analytical Chemistry(分析化学), 2015, 43(5): 709.

[101] Sun Gongwei, Huang Biao, Zhang Yi, et al. Chem. Commun., 2017, 53(97): 13075.

[102] Wei Juan, Dong Jiangli, Zhuo Shangjun, et al. Anal. Chem., 2017, 89(2): 1382.

[103] Zhang Jianying, Zhou Tao, Tang Yichuan, et al. Anal. Bioanal. Chem., 2018, 410(27): 7195.

[104] Tian Caiyan, Yin Jinwei, Zhao Zhongjun, et al. Talanta, 2017, 167: 75.

[105] Zhao Zhongjun, Wang Bo, Duan Yixiang. Anal. Chem., 2016, 88(3): 1667.

[106] Tang Jie, Ding Xuelu, Zhang Pei, et al. Chem. Commun., 2018, 92(54): 12962.

[107] Hang Le, Xu Zhouyi, Yin Zhibin, et al. Anal. Chem., 2018, 90(22): 13222.

[108] Yin Zhibin, Xu Zhouyi, Liu Rong, et al. Anal. Chem., 2017, 89(14): 7455.

[109] Yin Zhibin, Cheng Xiaoling, Liu Rong, et al. J. Anal. At. Spectrom., 2017, 32(10): 1878.

[110] Liang Zhisen, Zhang Shudi, Li Xiaoping, et al. Sci. Adv., 2017, 3(12): 1059.

[111] Li Xiaoping, Liang Zhisen, Zhang Shudi, et al. Nano Research, 2018, 11(11): 5989.

[112] Sun X Y, Zhang B, Lin H Q, et al. Corros. Sci., 2014, 79: 1.

[113] Wang H H, Wang J T, Tong Z, et al. Metall. Mater. Trans. A, 2018: 1.

[114] Jiao Z B, Luan J H, Guo Wei, et al. Mater. Res. Lett., 2017, 5(8): 562.

[115] Sun Zhiyuan, Hazut Ori, Huang Bochao, et al. Nano Lett., 2016, 16(7): 4490.

[116] Li Youxian, Chen Beibei, He Man, et al. Talanta, 2018, 188: 210.

[117] Lin Yao, Yang Yuan, Li Yuxuan, et al. Environ. Sci. Technol., 2016, 50(5): 2468.

[118] Li Jiaming, Guo Lianbo, Zhao Nan, et al. Talanta, 2016, 151: 234.

[119] Zhang Airui, Wang Hai, Zha Pengfei, et al. J. Anal. At. Spectrom., 2018, 33(11): 1910.

[120] Hu Jianyu, Deng Dongyan, Liu Rui, et al. J. Anal. At. Spectrom., 2018, 33(1): 57.

杭乐, 徐周毅, 杭纬, 黄本立. 中国原子光谱技术及应用发展近况[J]. 光谱学与光谱分析, 2019, 39(5): 1329. HANG Le, XU Zhou-yi, HANG Wei, HUANG Ben-li. Recent Technical and Application Development of Atomic Spectrometry in China[J]. Spectroscopy and Spectral Analysis, 2019, 39(5): 1329.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!