光子学报, 2016, 45 (7): 070714002, 网络出版: 2016-08-18  

激光诱导不同表面状态TP347H钢的等离子体光谱特性

The LIBS Plasma Characteristics of Different Surface State of TP347H Steel
作者单位
1 广东电网公司电力科学研究院, 广州510600
2 华南理工大学 电力学院, 广州 510640
摘要
选用火力发电厂锅炉受热面现场服役TP347H作为研究对象, 研究不同样品表面状态(打磨和未磨)的等离子体光谱特性.实验结果表明:随着激光击打次数的增加, 两种不同状态条件下获得的光谱数据的变化趋势存在较大差异;对于未磨样品, 在击打的过程中可连续探测到很强的Ca的特征谱线; 而对于打磨样品, 只在刚开始的几个激光脉冲中存在Ca的特征谱线.对TP347H本身含有的元素Fe、Mn来说, 未磨状态时, 随着激光击打次数的增加, 绝对光谱强度先迅速增加, 然后又慢慢减小; 打磨后的样品, 随着激光击打次数的增加, 绝对光谱强度先迅速增加,之后在一定范围内趋于稳定.未磨样品表面存在积灰黏结以及氧化层, 会在一定程度上增强探测的光谱强度、等离子体温度及电子密度, 而打磨之后有助于获取更加稳定的光谱数据.
Abstract
Choosing the TP347H steel which is used for the boiler heating surface in the thermal power plants as a research object, the characteristic of plasma spectral of the samples with different surface states(the unground and the ground) was analyzed. The experiment results show that, the change trends of the acquired spectral data of the two surface states are great difference with the increase of the laser hitting times. For the unground samples, the characteristic spectral line of Ca can clearly be detected in the whole experiment process. For the ground samples, the characteristic spectral line of Ca only exists in the beginning. For the unground TP347H samples containing of the elements of Fe and Mn, the absolute spectral intensity increases rapidly then reduces with the increase of the laser hitting times. For the ground TP347H samples, the absolute spectral intensity increases rapidly firstly then keeps relatively stable within a certain range with the increase of the laser hitting times. The unground samples exists fouling and slagging on the surface, which can enhance the spectral intensity, plasma temperature and electron density in a certain extent. But the spectral data stability of ground partis is better than that of the ground samples.
参考文献

[1] 李兵. 日本火电厂锅炉部件剩余寿命诊断技术[J]. 华北电力技术,1997, (8):5-10.

    LI Bing. Residual life diagnosis technology of Japan's coal-fired power plants[J]. North China Electric Power, 1997, (8):5-10.

[2] 董泽. 锅炉高温承压部件寿命预测及运行分析专家系统的研究[D]. 保定:华北电力大学, 2001.

    DONG Ze. Study on the life evaluation and operation analysis expert system for boiler's high temperature bearing elements[D]. Baoding: North China Electric Power University, 2001.

[3] CREMERS D A, YUEH F Y, SINGH J P, et al. Laser-induced breakdown spectroscopy, elemental analysis[M]. John Wiley & Sons, Ltd, 2006.

[4] 李荣青, 刘莹, 葛立新,等. 激光诱导荧光光谱法研究血细胞衰变规律[J]. 光子学报, 2006, 35(3):398-401.

    LI Rong-qing, LIU Ying, GE Xin-li, et al. Study on blood cells disintegration by laser included fluorescence spectrometry[J]. Acta Photonica Sinica, 2006, 35(3):398-401.

[5] SAMEK O, BEDDOWS D C S, TELLE H H, et al. Quantitative laser-induced breakdown spectroscopy analysis of calcified tissue samples[J]. Spectrochimica Acta Part B, 2001, 56(2):865-875.

[6] LEMIEUX P M, RYAN J V, FRENCH N B, et al. Results of the september 1997 DOE/EPA demonstration of multimetal continuous emission monitoring technologies[J]. Waste Management, 1998, 18(2):385-391.

[7] 姚顺春, 陆继东, 潘圣华,等. 粉煤灰未燃碳的深紫外激光诱导击穿光谱分析[J]. 中国激光, 2010, 37(4):1114-1117.

    YAO Shun-chun, LU Ji-dong, PAN Sheng-hua, et al. Analysis of unburned carbon in coal fly ash by using Laser-Induced Breakdown Spectroscopy in deep UV[J]. Chinese Journal of Laser, 2010, 37(4):1114-1117.

[8] BARRETE L, TURMEL S. On-line iron-ore slurry monitoring foe real-time process control of pellet making processes using laser-induced breakdown spectroscopy[J]. Spectrochim. Acta Part B, 2001, 56:715-723.

[9] KURIHARA M, IKEDA K, IZAWA Y, et al. Optimal boiler control through real-time monitoring of unburned carbon in fly ash by laser-induced breakdown spectroscopy[J]. Applied optics, 2003, 42(30):6159-6165.

[10] CAPITELLI F, COLAO F, PROVENZANO M R, et al. Determination of heavy metals in soils by laser induced breakdown spectroscopy[J]. Geoderma, 2002, 106(1):45-62.

[11] LITHGOW G A, ROBINSON A L, BUCKLEY S G. Ambient measurements of metal-containing PM 2.5 in an urban environment using laser-induced breakdown spectroscopy[J]. Atmospheric Environment, 2004, 38(20):3319-3328.

[12] 黄庆举. 脉冲激光诱导Cu靶产生发光羽的特性分析[J]. 光子学报, 2006, 35(11):1636-1639.

    HUANG Qing-yi. The properties analysis of plume produced by pulsed laser ablation of metal Cu[J]. Acta Photonica Sinica, 2006, 35(11):1636-1639.

[13] 陈金忠, 马瑞玲, 王敬,等. 光诱导击穿光谱技术测定钢样品中元素Mn和Ni[J]. 光子学报, 2014, 43(12):1214001.

    CHEN Jin-zhong, MA Rui-ling, WANG Jing, et al. Detection of the elements Mn and Ni in a steel sample by laser-induced breakdown spectroscopy[J]. Acta Photonica Sinica, 2014, 43(12):1214001.

[14] 张扬, 钱静, 李鹏飞, 等.飞秒激光诱导的Mn2+掺杂锗酸盐玻璃上转换发光[J].发光学报,2015,36(7):738-743.

    ZHANG Yang, QIAN Jing, LI Peng-fei, et al. Upconversion luminescence of Mn2+ doped-germanate glass induced by femtosecond laser pulses[J]. Chinese Journal of Luminescence, 2015, 36(7): 738-743.

[15] AGUILERA J A, ARAGON C, PENALBA F. Plasma shielding effect in laser ablation of metallic samples and its influence on LIBS analysis[J]. Applied Surface Science, 1998, 127:309-314.

[16] Hiroyuki K, Michihiro A, Hideaki Y. 激光诱导击穿光谱技术对钢中缺陷的快速表征[J]. 冶金分析, 2009, 29(1):13-16.

    HIROYUKI K, MICHIHIRO A, HIDEAKI T O H. Rapid defect characterization of steel by laser induced breakdown spectroscopy[J]. Metallurgical Analysis, 2009, 29(1):13-16.

[17] Arne B, Bjork T. 激光诱导击穿光谱技术对冶金样品中钢及炉渣的同时分析[J]. 冶金分析, 2009, 29(2):8-13.

    ARNE B, BJORK T. Laser ablation breakdown spectroscopy technique for simultaneous analysis of steel and slags in metallurgical samples[J]. Metallurgical Analysis, 2009, 29(2):8-13.

[18] 屈华阳, 胡净宇, 赵雷,等. 激光诱导击穿光谱法判断汽车板表面划痕缺陷[J]. 冶金分析, 2013, 33(2):13-17.

    QU Hua-yang, HU Jing-yu, ZHAO Lei, et al. Judge of surface scratch defects on automobile steel sheets by laser-induced breakdown spectroscopy[J]. Metallurgical Analysis, 2013, 33(2):13-17.

[19] LABUTIN T A, POPOV A M, LEDNEV V N, et al. Correlation between properties of a solid sample and laser-induced plasma parameters[J]. Spectrochimica Acta Part B:Atomic Spectroscopy, 2009, 64(10):938-949.

[20] ABDEL-SALAM Z, ABDELHAMID M, KHALIL S M, et al. LIBS new application: determination of metallic alloys surface hardness[J]. 7th International Conference on Laser Applications- ICLA, 2009, 1172: 49-52.

[21] YAO S, DONG M, LU J, et al. Correlation between grade of pearlite spheroidization and laser induced spectra[J]. Laser Physics, 2013, 23(12):125702.

[22] 李俊彦, 陆继东, 李军,等. 不同硬度受热面材料的激光诱导等离子体光谱特性分析[J]. 中国激光, 2011, 38(8):08185002.

    LI Jun-yan, LU Ji-dong, LI Jun, et al. Laser-induced plasma spectra of heating surface materials with different hardnesses[J]. Chinese Journal of Laser, 2011, 38(8):08185002.

[23] LI J, LU J, DAI Y, et al. Correlation between aging grade of T91 steel and spectralcharacteristics of the laser-induced plasma[J]. Applied Surface Science, 2015, 346:302-310.

[24] 谢承利, 陆继东, 李捷,等. 激光诱导煤粉等离子体的特性研究[J]. 工程热物理学报, 2007, 28(s2):133-136.

    XIE Cheng-li, LU Ji-dong, LI Jie, et al. Study on the property of Laser-Induced plasma of pulverized coal[J]. Journal of Engineering Thermophy, 2007, 28(s2):133-136.

[25] 李军, 陆继东, 姚顺春,等. 不同物理形态复合肥的激光诱导击穿光谱特性分析[J]. 光谱学与光谱分析, 2012, 32(4):881-885.

    LI Jun, LU Ji-dong, YAO Shun-chun, et al. The study on the laser-induced breakdown spectroscopy properties of compound fertilizer with different physical forms[J]. Spectroscopy and Spectral Analysis, 2012, 32(4):881-885.

[26] RAUSCHENBACH I, LAZIC V, PAVLOV S G, et al. Laser induced breakdown spectroscopy on soils and rocks influence of the sample temperature, moisture and roughness[J]. Spectrochimica Acta Part B, 2008, 63(10):1205-1215.

[27] VRENEGOR J, NOLL R, STURM V. Investigation of matrix effects in laser-induced breakdown spectroscopy plasmas of high-alloy steel for matrix and minor elements[J]. Spectrochimica Acta Part B, 2005, 60(7-8):1083-1091.

[28] 戴沅, 董璇, 钟万里,等. 12Cr1MoV晶粒度等级与激光诱导击穿光谱特性的关联性研究[J]. 中国激光, 2014, 4(41):0415004(1-6).

    DAI Yuan, DONG Xuan, ZHONG Wan-li, et al. Study of the relevance between different grain sizes of 12Cr1MoV and characteristic of Laser Induced Breakdown Spectroscopy[J]. Chinese Journal of Laser, 2014, 4(41):0415004(1-6).

[29] 戴沅, 李军, 钟万里,等. 不同金相组织12Cr1MoV的等离子体特性研究[J]. 光学学报, 2014, 34(3):0330003(1-6).

    DAI Yuan, LI Jun, ZHONG Wan-li, et al. The plasma characteristics of different microstructures of steel 12Cr1MoV[J]. Acta Optica Sinica, 2014, 34(3):0330003(1-6).

[30] AYDIN U, ROTH P, GEHLEN C D, et al. Spectral line selection for time-resolved investigations of laser-induced plasmas by an iterative Boltzmann plot method[J]. SpectrochimicaActa Part B: Atomic Spectroscopy, 2008, 63(10):1060-1065.

[31] STAVROPOULOS P, MICHALAKOU A, SKEVIS G, et al. Laser-induced breakdown spectroscopy as an analytical tool for equivalence ratio measurement in methane–air premixed flames[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 2005, 60(7):1092-1097.

[32] BOUMANS P W J. Inductively coupled plasma emission spectroscopy [M]. John Wiley & Sons, Inc. 1987.

戴沅, 李军, 李文胜, 董璇, 陆继东. 激光诱导不同表面状态TP347H钢的等离子体光谱特性[J]. 光子学报, 2016, 45(7): 070714002. DAI Yuan, LI Jun, LI Wen-sheng, DONG Xuan, LU Ji-dong. The LIBS Plasma Characteristics of Different Surface State of TP347H Steel[J]. ACTA PHOTONICA SINICA, 2016, 45(7): 070714002.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!