Photonics Research, 2018, 6 (5): 05000B74, Published Online: Jul. 6, 2018  

Toward mid-infrared nonlinear optics applications of silicon carbide microdisks engineered by lateral under-etching [Invited] Download: 670次

Author Affiliations
1 Université de Lyon, Institut des Nanotechnologie de Lyon, 69131 Ecully, France
2 Department of Electrical Engineering, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada
3 School of Physics, University of Sydney, Sydney, NSW 2006, Australia
4 RMIT School of Electrical and Computer Engineering, Melbourne, VIC 3000, Australia
5 Université Côte d’Azur, CNRS, CRHEA, France
6 e-mail: Christian.grillet@ec-lyon.fr
Copy Citation Text

David Allioux, Ali Belarouci, Darren Hudson, Eric Magi, Milan Sinobad, Guillaume Beaudin, Adrien Michon, Neetesh Singh, Regis Orobtchouk, Christian Grillet. Toward mid-infrared nonlinear optics applications of silicon carbide microdisks engineered by lateral under-etching [Invited][J]. Photonics Research, 2018, 6(5): 05000B74.

References

[1] R. Soref. Mid-infrared photonics in silicon and germanium. Nat. Photonics, 2010, 4: 495-497.

[2] L. Carletti, P. Ma, Y. Yu, B. Luther-Davies, D. Hudson, C. Monat, R. Orobtchouk, S. Madden, D. J. Moss, M. Brun, S. Ortiz, P. Labeye, S. Nicoletti, C. Grillet. Nonlinear optical response of low loss silicon germanium waveguides in the mid-infrared. Opt. Express, 2015, 23: 8261-8271.

[3] L. Carletti, M. Sinobad, P. Ma, Y. Yu, D. Allioux, R. Orobtchouk, M. Brun, S. Ortiz, P. Labeye, J. M. Hartmann, S. Nicoletti, S. Madden, B. Luther-Davies, D. J. Moss, C. Monat, C. Grillet. Mid-infrared nonlinear optical response of Si-Ge waveguides with ultra-short optical pulses. Opt. Express, 2015, 23: 32202-32214.

[4] N. Singh, D. D. Hudson, Y. Yu, C. Grillet, S. D. Jackson, A. Casas-Bedoya, A. Read, P. Atanackovic, S. G. Duval, S. Palomba, B. Luther-Davies, S. Madden, D. J. Moss, B. J. Eggleton. Midinfrared supercontinuum generation from 2 to 6 μm in a silicon nanowire. Optica, 2015, 2: 797-802.

[5] C. Grillet, L. Carletti, C. Monat, P. Grosse, B. Ben Bakir, S. Menezo, J. M. Fedeli, D. J. Moss. Amorphous silicon nanowires combining high nonlinearity, FOM and optical stability. Opt. Express, 2012, 20: 22609-22615.

[6] A. Griffith, R. Lau, J. Cardenas, Y. Okawachi, A. Mohanty, R. Fain, Y. H. D. Lee, M. Yu, C. T. Phare, C. B. Poitras, A. L. Gaeta, M. Lipson. Silicon-chip mid-infrared frequency comb generation. Nat. Commun., 2015, 6: 6299.

[7] B. Kuyken, T. Ideguchi, S. Holzner, M. Yan, T. W. Hänsch, J. Van Campenhout, P. Verheyen, S. Coen, F. Leo, R. Baets, G. Roelkens, N. Picqué. An octave-spanning mid-infrared frequency comb generated in a silicon nanophotonic wire waveguide. Nat. Commun., 2015, 6: 6310.

[8] C. Y. Wang, T. Herr, P. Del’Haye, A. Schliesser, J. Hofer, R. Holzwarth, T. W. Hänsch, N. Picqué, T. J. Kippenberg. Mid-infrared optical frequency combs at 2.5 μm based on crystalline microresonators. Nat. Commun., 2013, 4: 1345.

[9] C. Monat, C. Grillet, M. Collins, A. Clark, J. Schroeder, C. Xiong, J. Li, L. O’Faolain, T. F. Krauss, B. J. Eggleton, D. J. Moss. Integrated optical auto-correlator based on third-harmonic generation in a silicon photonic crystal waveguide. Nat. Commun., 2014, 5: 3246.

[10] X. Gai, Y. Yu, B. Kuyken, P. Ma, S. J. Madden, J. Van Campenhout, P. Verheyen, G. Roelkens, R. Baets, B. Luther-Davies. Nonlinear absorption and refraction in crystalline silicon in the mid-infrared. Laser Photon. Rev., 2013, 7: 1054-1064.

[11] R. Kitamura, L. Pilon, M. Jonasz. Optical constants of silica glass from extreme ultraviolet to far infrared at near room temperature. Appl. Opt., 2007, 46: 8118-8133.

[12] J. B. Casady, R. W. Johnson. Status of silicon carbide (SiC) as a wide-bandgap semiconductor for high-temperature applications: a review. Solid-State Electron., 1996, 39: 1409-1422.

[13] X. Lu, J. Y. Lee, S. Rogers, Q. Lin. Optical Kerr nonlinearity in a high-Q silicon carbide microresonator. Opt. Express, 2014, 22: 30826-30832.

[14] H. Sato, M. Abe, I. Shoji, J. Suda, T. Kondo. Accurate measurements of second-order nonlinear optical coefficients of 6H and 4H silicon carbide. J. Opt. Soc. Am. B, 2009, 26: 1892-1896.

[15] J. Cardenas, M. Yu, Y. Okawachi, C. B. Poitras, R. K. W. Lau, A. Dutt, A. L. Gaeta, M. Lipson. Optical nonlinearities in high-confinement silicon carbide waveguides. Opt. Lett., 2015, 40: 4138-4141.

[16] S. Yamada, B. S. Song, J. Upham, T. Asano, Y. Tanaka, S. Noda. Suppression of multiple photon absorption in a SiC photonic crystal nanocavity operating at 1.55 μm. Opt. Express, 2012, 20: 14789-14796.

[17] S. Wang, M. Zhan, G. Wang, H. Xuan, W. Zhang, C. Liu, C. Xu, Y. Liu, Z. Wei, X. Chen. 4H-SiC: a new nonlinear material for midinfrared lasers. Laser Photon. Rev., 2013, 7: 831-838.

[18] MartiniF.PolitiA., “Four wave mixing in 3C SiC ring resonators,” arXiv:1707.03645 (2017).

[19] W. J. Tropf, M. E. Thomas. Infrared refractive index and thermo-optic coefficient measurement at APL. Johns Hopkins APL Tech. Dig., 1998, 19: 293-297.

[20] H. Mutschke, A. Andersen, D. Clement, T. Henning, G. Peiter. Infrared properties of SiC particles. Astron. Astrophys., 1999, 345: 187-202.

[21] F. De Leonardis, B. Troia, R. A. Soref, V. M. N. Passaro. Dispersion of nonresonant third-order nonlinearities in silicon carbide. Sci. Rep., 2016, 6: 32622.

[22] D. J. Moss, E. Ghahramani, J. E. Sipe. Semi-ab initio tight-binding band-structure calculations of χ3 (−3ω; ω, ω, ω) in C, Si, Ge, Sic, BP, Alp, AlAs, AISb, Gap, GaAs, GaSb, InP, InAs, and InSb. Phys. Status Solidi C, 1991, 164: 587-604.

[23] HarrisG. L., Properties of Silicon Carbide (INSPEC, the Institution of Electrical Engineers, 1995).

[24] C. A. Zorman, A. J. Fleischman, A. S. Dewa, M. Mehregany, C. Jacob, S. Nishino, P. Pirouz. Epitaxial growth of 3C-SiC films on 4 in. diam (100) silicon wafers by atmospheric pressure chemical vapor deposition. J. Appl. Phys., 1995, 78: 5136-5138.

[25] H. Nagasawa, K. Yagi, T. Kawahara. 3C-SiC hetero-epitaxial growth on undulant Si (0 0 1) substrate. J. Crys. Grow., 2002, 237–239: 1244-1249.

[26] S. Yamada, B. S. Song, T. Asano, S. Noda. Silicon carbide-based photonic crystal nanocavities for ultra-broadband operation from infrared to visible wavelengths. Appl. Phys. Lett., 2011, 99: 201102.

[27] X. Tang, K. Wongchotigul, M. G. Spencer. Optical waveguide formed by cubic silicon carbide on sapphire substrates. Appl. Phys. Lett., 1991, 58: 917-918.

[28] X. Lu, J. Y. Lee, P. X. L. Feng, Q. Lin. High Q silicon carbide microdisk resonator. Appl. Phys. Lett., 2014, 104: 181103.

[29] M. Radulaski, T. M. Babinec, K. Mu, K. G. Lagoudakis, J. L. Zhang, S. Buckley, Y. A. Kelaita, K. Alassaad, G. Ferro. Visible photoluminescence from cubic (3C) silicon carbide microdisks coupled to high quality whispering gallery modes. ACS Photon., 2015, 2: 14-19.

[30] AlliouxD.BelarouciA.HudsonD.SinghN.MagiE.BeaudinG.MichonA.OrobtchoukR.GrilletC., “Silicon carbide microdisk on silicon pillar probed by evanescent coupling,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (Optical Society of America, 2016), paper SF2P.1.

[31] F. Martini, A. Politi. Linear integrated optics in 3C silicon carbide. Opt. Express, 2017, 25: 10735-10742.

[32] J. Cardenas, M. Zhang, C. T. Phare, S. Y. Shah, C. B. Poitras, B. Guha, M. Lipson. High Q SiC microresonators. Opt. Express, 2013, 21: 16882-16887.

[33] T. Herr, V. Brasch, J. D. Jost, I. Mirgorodskiy, G. Lihachev, M. L. Gorodetsky, T. J. Kippenberg. Mode spectrum and temporal soliton formation in optical microresonators. Phys. Rev. Lett., 2014, 113: 123901.

[34] C. Grillet, E. Magi, B. J. Eggleton. Fiber taper coupling to chalcogenide microsphere modes. Appl. Phys. Lett., 2008, 92: 171109.

[35] JohnsonT., “Silicon microdisk resonators for nonlinear optics and dynamics,” Ph.D. dissertation (California Institute of Technology, 2009).

[36] A. Kordts, M. Pfeiffer, H. Guo, V. Brasch, T. J. Kippenberg. Higher order mode suppression in high-Q anomalous dispersion SiN microresonators for temporal dissipative Kerr soliton formation. Opt. Lett., 2016, 41: 452-455.

[37] M. Masi, R. Orobtchouk, G. Fan, J. M. Fedeli, L. Pavesi. Towards a realistic modelling of ultra-compact racetrack resonators. J. Lightwave Technol., 2010, 28: 3233-3242.

[38] V. B. Braginsky, M. L. Gorodetsky, V. S. Ilchenko. Quality-factor and nonlinear properties of optical whispering-gallery modes. Phys. Lett. A, 1989, 137: 393-397.

[39] T. J. Kippenberg, S. M. Spillane, K. J. Vahala. Modal coupling in traveling-wave resonators. Opt. Lett., 2002, 27: 1669-1671.

[40] B. E. Little, J. P. Laine. Surface-roughness-induced contradirectional coupling in ring and disk resonators. Opt. Lett., 1997, 22: 4-6.

[41] S. Ramelow, A. Farsi, S. Clemmen, J. S. Levy, A. R. Johnson, Y. Okawachi, M. R. E. Lamont, M. Lipson, A. L. Gaeta. Strong polarization mode coupling in microresonators. Opt. Lett., 2014, 39: 5134-5137.

[42] A. Schliesser, N. Picqué, T. W. Hänsch. Mid-infrared frequency combs. Nat. Photonics, 2012, 6: 440-449.

[43] T. J. Kippenberg, R. Holzwarth, S. A. Diddams. Microresonator-based optical frequency combs. Science, 2011, 332: 555-559.

[44] S. Coen, M. Erkintalo. Universal scaling laws of Kerr frequency combs. Opt. Lett., 2013, 38: 1790-1792.

[45] S. A. Diddams. The evolving optical frequency comb. J. Opt. Soc. Am. B, 2010, 27: B51-B62.

[46] X. Song, J. F. Michaud, F. Cayrel, M. Zielinski, M. Portail, T. Chassagne, E. Collard, D. Alquier. Evidence of electrical activity of extended defects in 3C-SiC grown on Si. Appl. Phys. Lett., 2010, 96: 142104.

[47] R. Khazaka, E. Bahette, M. Portail, D. Alquier, J. F. Michaud. Toward high-quality 3C-SiC membrane on a 3C-SiC pseudo-substrate. Mater. Lett., 2015, 160: 28-30.

[48] H. S. Jha, P. Agarwal. Effects of substrate temperature on structural and electrical properties of cubic silicon carbide films deposited by hot wire chemical vapor deposition technique. J. Mater. Sci. Mater. Electron., 2015, 26: 2844-2850.

[49] X. Lu, J. Y. Lee, P. X.-L. Feng, Q. Lin. Silicon carbide microdisk resonator. Opt. Lett., 2013, 38: 1304-1306.

[50] H. Lee, T. Chen, J. Li, K. Y. Yang, S. Jeon, O. Painter, K. J. Vahala. Chemically etched ultrahigh-Q wedge-resonator on a silicon chip. Nat. Photonics, 2012, 6: 369-373.

David Allioux, Ali Belarouci, Darren Hudson, Eric Magi, Milan Sinobad, Guillaume Beaudin, Adrien Michon, Neetesh Singh, Regis Orobtchouk, Christian Grillet. Toward mid-infrared nonlinear optics applications of silicon carbide microdisks engineered by lateral under-etching [Invited][J]. Photonics Research, 2018, 6(5): 05000B74.

引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!