红外与毫米波学报, 2015, 34 (1): 29, 网络出版: 2015-03-23  

p-GaAs同质结太赫兹探测器的优化与性能

Optimization and performance of p-GaAs homojunction THz detectors
作者单位
上海交通大学 物理与天文系 人工结构及量子调控教育部重点实验室, 上海 200240
摘要
从提高p-GaAs同质结太赫兹探测器量子效率出发, 在考虑温度和偏压等参数的影响后, 优化了谐振腔增强的p-GaAs同质结太赫兹探测器的材料及结构参数, 使探测器的量子效率提高到了17%.并计算了探测器的响应率、探测率和偏压、温度、光谱频率的关系, 得到了最佳工作偏压(10~40mV)、最佳工作温度(<8K)和最大探测率(4.1×1010cm Hz1/2/W).而通过施加一对匹配的反射镜来构造谐振腔的设计, 所能获得的极限量子效率为26%, 极限探测率和响应率分别为5.7×1010cm Hz1/2/W、25.9A/W.
Abstract
In order to improve the quantum efficiency of THz detectors made of p-GaAs homojunction, the effects of temperature and bias voltage were taken into account. By optimizing the materials and structure parameters of the resonant cavity enhanced p-GaAs HIWIP detectors, its quantum efficiency was increased to 17%. The relationships among the responsivity and detectivity of the detector, bias voltage, temperature and spectral frequency were simulated, leading to an optimized bias voltage range(10~40mV), an optimal temperature(< 8K) and a maximum detectivity(4.1×1010cm Hz1/2/W). By applying a pair of matched mirror, the ultimate quantum efficiency, the detectivity and the responsivity are 26%, 5.7×1010cm Hz1/2/W and 25.9 A/W, respectively.
参考文献

[1] YAO Jian-Quan. Introduction of THz-wave and its applications [J]. Journal of Chongqing University of Posts and Telecommunications(Natural Science)(姚建铨.太赫兹技术及其应用.重庆邮电大学学报(自然科学版)), 2010, 22(6): 703-707.

[2] WEI Hua. The prospects for THz detection techniques development [J]. Infrared Technology(魏华.太赫兹探测技术发展与展望.红外技术), 2010, 32(4): 231-234.

[3] CAO Jun-Cheng. Semiconductor terahertz sources, detectors and applications[M]. Beijing: Science Press(曹俊诚.半导体太赫兹源、探测器与应用.北京: 科学出版社), 2012: 5-7.

[4] YANG Guang-Kun, YUAN Bin, XIE Dong-Yan, et al. Analysis on the use of THz technology in the military application [J]. Laser & Infrared(杨光鲲,袁斌,谢东彦等.太赫兹技术在军事领域的应用.激光与红外), 2011, 41(4): 376-380.

[5] SHEN Wen-Zhong. Novel Homojunction Far-infrared Detectors [J]. J.InfraredMillim.Waves(沈文忠.新型同质结构远红外探测器.红外与毫米波学报), 2000, 19(3): 161-168.

[6] Perera A G U,Yuan H X,Gamage S K, et al. GaAs multilayer p+-i homojunction far-inrared detectors [J]. J.Appl.Phys, 1997, 81(7): 3316-3319.

[7] SHEN Wen-Zhong,Perera A G U Francombe, M H, et al. Effect of emitter layer concentration on the performance of GaAs p-i homojunction far-infrared detectors: a comparison of theory and experiment [J]. IEEE Trans. Electron Devices, 1998, 45(8): 1671-1677.

[8] ZHENG Mei-Mei, ZHANG Yue-Heng, SHEN Wen-Zhong. Performance optimization of resonant cavity enhanced n-GaAshomojunction far-infrared detectors: A theoretical study [J]. J.Appl.phys, 2009, 105(8): 4515-4520.

[9] DENG Guo-Gui, ZHANG Yue-Heng, SHEN Wen-Zhong. Design of a top mirror for the n-GaAshomojunction far-infrared/terahertz detectors [J]. J.Appl.phys, 2010, 108(7): 4509-4513.

[10] A G U Perera, H X Yuan, M H Francombe. Homojunction internal photoemission far-infrared detectors: Photoresponse performance analysis [J]. J.Appl.phys, 1995, 77(2): 915-924.

[11] SHEN Wen-Zhong, A G U.Perera, LIU Hui-Chun, et al. Bias effects in high performance GaAshomojunction far-infrared detectors [J]. Appl.phys.lett, 1997, 71(18): 2677-2679.

[12] Yuan H X,Perera A G U, Dark current analysis of Si homojunction interfacial work function internal photoemission far-infrared detectors [J]. Appl.phys.lett, 1995, 66(17): 2262-2264.

[13] Harald Schneider, LIU Hui-Chun. Quantum well Infrared photodetectors: Physics and Applications[M]. New York: Springer Publishing Company, 2007, 71-72.

[14] Blakemore J S. Semiconducting and other major properties of gallium arsenide [J]. J.Appl.phys, 1982, 53(R123).

钱飞, 王天盟, 张月蘅, 沈文忠. p-GaAs同质结太赫兹探测器的优化与性能[J]. 红外与毫米波学报, 2015, 34(1): 29. QIAN Fei, WANG Tian-Meng, ZHANG Yue-Heng, SHEN Wen-Zhong. Optimization and performance of p-GaAs homojunction THz detectors[J]. Journal of Infrared and Millimeter Waves, 2015, 34(1): 29.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!