激光与光电子学进展, 2018, 55 (9): 090003, 网络出版: 2018-09-08   

量子定位导航技术研究与发展现状 下载: 2363次

Research and Development Status of Quantum Navigation Technology
作者单位
1 中国科学院半导体研究所半导体集成技术工程研究中心, 北京 100083
2 中国科学院大学电子电气与通信工程学院, 北京 101408
3 中国科学院大学微电子学院, 北京 101408
引用该论文

宋培帅, 马静, 马哲, 张淑媛, 司朝伟, 韩国威, 宁瑾, 杨富华, 王晓东. 量子定位导航技术研究与发展现状[J]. 激光与光电子学进展, 2018, 55(9): 090003.

Song Peishuai, Ma Jing, Ma Zhe, Zhang Shuyuan1, Si Chaowei, Han Guowei, Ning Jin, Yang Fuhua, Wang Xiaodong. Research and Development Status of Quantum Navigation Technology[J]. Laser & Optoelectronics Progress, 2018, 55(9): 090003.

参考文献

[1] Horodecki R, Horodecki P, Horodecki M, et al. Quantum entanglement[J]. Reviews of Modern Physics, 2009, 81(2): 865-942.

[2] Terhal B M. Detecting quantum entanglement[J]. Theoretical Computer Science, 2002, 287(1): 313-335.

[3] Walls D F. Squeezed states of light[J]. Nature, 1983, 306(5939): 141-146.

[4] 于祖荣. 量子光学中的非经典态[J]. 物理学进展, 1999, 19(1): 72-95.

    Yu Z R. Non-classical states in the quantum optics[J]. Progress in Physics, 1999, 19(1): 72-95.

[5] 彭堃墀. 压缩态纠缠与连续变量纠缠交换[J]. 激光与光电子学进展, 2005, 42(12): 7-8.

    Peng K C.Squeezed state entanglement and continuous variable entanglement swapping[J]. Laser & Optoelectronics Progress, 2005, 42(12): 7-8.

[6] 邹宏新. 新一代惯性导航技术: 量子导航[J]. 国防科技, 2014, 35(6): 19-24.

    Zou H X. The inertial navigation technology of next generation: quantum navigation[J]. National Defense Science & Technology, 2014, 35(6): 19-24.

[7] 张欢阳, 张冠杰, 林象平. GPS的未来: 量子定位系统[J]. 舰船电子工程, 2004, 24(5): 40-43.

    Zhang H Y, Zhang G J, Lin X P. The future of GPS-quantum positioning system[J]. Ship Electronic Engineering, 2004, 24(5): 40-43.

[8] 许方星. 简析量子定位技术及应用前景[J]. 科技资讯, 2014, 12(22): 7.

    Xu F X. Introduction of the quantum positioning system and its application[J]. Science & Technology Information, 2014, 12(22): 7.

[9] 李润兵, 王谨, 詹明生. 新一代惯性导航技术:冷原子陀螺仪[J]. 全球定位系统, 2010, 35(4): 1-5.

    Li R B, Wang J, Zhan M S. New generation inertial navigation technology: cold atom gyroscope[J]. GNSS World of China, 2010, 35(4): 1-5.

[10] 王杰华, 石卫平. 国外卫星导航定位系统的应用体制及政策[J]. 中国测绘, 2010(1): 40-43.

    Wang J H, Shi W P.The application system and policy of foreign satellite navigation and positioning system[J]. China Surveying and Mapping, 2010(1): 40-43.

[11] 周楠. GPS如何测定方位[J]. 科学世界, 2012(2): 22-25.

    Zhou N. How does GPS determine the orientation[J]. Science World, 2012(2): 22-25.

[12] 王文贯, 唐诗华. GPS卫星定位误差概论[J]. 测绘与空间地理信息, 2006, 29(5): 39-42.

    Wang W G, Tang S H. Conspectus of GPS surveying errors[J]. Geomatics & Spatial Information Technology, 2006, 29(5): 39-42.

[13] 张树侠, 孙静. 捷联式惯性导航系统[M]. 北京:国防工业出版社, 1992.

    Zhang S X, Sun J. Strapdown inertial navigation system[M]. Beijing: National Defense Industry Press, 1992.

[14] 周徐昌, 沈建森. 惯性导航技术的发展及其应用[J]. 兵工自动化, 2006, 25(9): 55-56.

    Zhou X C, Shen J S. Development of inertial navigation technology and its applications[J]. Ordnance Industry Automation, 2006, 25(9): 55-56.

[15] 董进武. 惯性导航技术浅析[J]. 仪表技术, 2017(1): 41-43.

    Dong J W. Analysis on inertial navigation technology[J]. Instrumentation Technology, 2017(1): 41-43.

[16] 熊必凤. 低成本MEMS陀螺仪随机漂移误差的建模及修正[D]. 重庆: 西南大学, 2017.

    Xiong B F. Research on the modeling and correction technology of random drift error of low cost MEMS gyroscope[D]. Chongqing: Southwest University, 2017.

[17] 王新龙. 惯性导航基础[M]. 西安: 西北工业大学出版社, 2013: 67-70.

    Wang X L. Inertial navigation foundation[M]. Xi′an: Northwestern Polytechnical University Press, 2013: 67-70.

[18] 马建军, 李文强, 郑志强. MIMU随机误差分析与建模[J]. 压电与声光, 2007, 29(4): 483-486.

    Ma J J, Li W Q, Zheng Z Q. Analyzing and modeling for stochastic error of MIMU[J]. Piezoelectrics & Acoustooptics, 2007, 29(4): 483-486.

[19] 杜小菁, 翟峻仪. 基于MEMS的微型惯性导航技术综述[J]. 飞航导弹, 2014(9): 77-81.

    Du X J, Zhai J Y. Summary of micro inertial navigation technology based on MEMS[J]. Aerodynamic Missile Journal, 2014(9): 77-81.

[20] Syed Z F, Aggarwal P, Goodall C, et al. A new multi-position calibration method for MEMS inertial navigation systems[J]. Measurement Science & Technology, 2007, 18(7): 1897-1907.

[21] 张谦, 王玮, 王蕾, 等. 基于动态Allan方差的光纤陀螺随机误差分析及算法改进[J]. 光学学报, 2015, 35(4): 0406003.

    Zhang Q, Wang W, Wang L, et al. Research on random errors of fiber optic gyro based on dynamic Allan variance and algorithm improvement[J]. Acta Optica Sinica, 2015, 35(4): 0406003.

[22] 张娜, 李绪友. 动态Allan方差的理论改进及其应用研究[J]. 光学学报, 2011, 31(11): 1106003.

    Zhang N, Li X Y. Research on theoretical improvement of dynamic Allan variance and its application[J]. Acta Optica Sinica, 2011, 31(11): 1106003.

[23] 李晓莹, 胡敏, 张鹏, 等. 交叠式Allan方差在微机械陀螺随机误差辨识中的应用[J]. 西北工业大学学报, 2007, 25(2): 225-229.

    Li X Y, Hu M, Zhang P, et al. Applying overlapping Allan variance theory to better stochastic modeling of microgyro[J]. Journal of Northwestern Polytechnical University, 2007, 25(2): 225-229.

[24] Giovannetti V, Lloyd S, Maccone L. Quantum-enhanced positioning and clock synchronization[J]. Nature, 2001, 412(6845): 417-419.

[25] Schrdinger E. The current situation in quantum mechanics (1935)[M]. Wiesbaden: Vieweg+Teubner Verlag, 1984: 98-129.

[26] Sackett C A, Kielpinski D, King B E, et al. Experimental entanglement of four particles[J]. Nature, 2000, 404(6775): 256-259.

[27] Hagley E, Matre X, Nogues G, et al. Generation of Einstein-Podolsky-Rosen pairs of atoms[J]. Physical Review Letters, 1997, 79(1): 1-5.

[28] Shih Y H, Alley C O. New type of Einstein-Podolsky-Rosen-Bohm experiment using pairs of light quanta produced by optical parametric down conversion[J]. Physical Review Letters, 1988, 61(26): 2921-2924.

[29] 牛孝灵. 纠缠光子的制备和应用[D]. 合肥: 中国科学技术大学, 2009.

    Niu X L. Preparation and application of entangled photons[D]. Hefei: University of Science and Technology of China, 2009.

[30] 吴华, 王向斌, 潘建伟. 量子通信现状与展望[J]. 中国科学: 信息科学, 2014, 44(3): 296-311.

    Wu H, Wang X B, Pan J W. Quantum communication: status and prospects[J]. Scientia Sinica (Informationis), 2014, 44(3): 296-311.

[31] Zhao Z, Yang T, Chen Y A, et al. Experimental test of quantum nonlocality in four-photon Greenberger-Horne-Zeilinger entanglement[J]. Physics, 2003, 91(18): 11173-11186.

[32] Zhao Z, Chen Y A, Zhang A N, et al. Experimental demonstration of five-photon entanglement and open-destination teleportation[J]. Nature, 2004, 430(6995): 54-58.

[33] Lu C Y, Zhou X Q, Gühne O, et al. Experimental entanglement of six photons in graph states[J]. Nature Physics, 2007, 3(2): 91-95.

[34] Yao X C, Wang T X, Xu P, et al. Observation of eight-photon entanglement[J]. Nature Photonics,2012, 6(4): 225-228.

[35] Wang X L, Chen L K, Li W, et al. Experimental ten-photon entanglement[J]. Physical Review Letters, 2016, 117(21): 210502.

[36] 徐剑秋, 楼祺洪, 宁东, 等. 受激拉曼散射中的二阶量子关联[J]. 光学学报, 1997, 17(9) : 70-73.

    Xu J Q, Lou Q H, Ning D, et al. Second order quantum correlation in stimulated Raman scattering[J]. Acta Optica Sinica, 1997, 17(9) : 70-73.

[37] 英国研制量子导航定位系统QPS精确度比GPS更高[EB/OL]. (2014-05-19)[2018-01-08]. http://scitech.people.com.cn/n/2014/0519/c1057-25032697.html.

    The UK developed the quantum navigation positioning system: the QPS accuracy is higher than that of GPS[EB/OL]. (2014-05-19)[2018-01-08]. http://scitech.people.com.cn/n/2014/0519/c1057-25032697.html.

[38] Giovannetti V, Lloyd S, Maccone L. Advances in quantum metrology[J]. Nature Photonics, 2011, 5(4): 222-229.

[39] Maccone L, Giovannetti V. Quantum metrology: beauty and the noisy beast[J]. Nature Physics, 2011, 7(5): 376-377.

[40] Giovannetti V, Lloyd S, Maccone L, et al. Conveyor-belt clock synchronization[J]. Physical Review A, 2004, 70(4): 043808.

[41] Valencia A, Scarcelli G, Shih Y. Distant clock synchronization using entangled photon pairs[J]. Applied Physics Letters, 2004, 85(13): 2655-2657.

[42] Bahder T B. Quantum positioning system[C]∥36th Annual Precise Time and Time Interval (PTTI) Meeting, 2005: 423-427.

[43] Villoresi P, Jennewein T, Tamburini F, et al. Experimental verification of the feasibility of a quantum channel between space and Earth[J]. New Journal of Physics, 2008, 10(3): 033038.

[44] Ben-Av R, Exman I. Optimized multiparty quantum clock synchronization[J]. Physical Review A, 2011, 84(1): 014301.

[45] Lopez-Mago D, Novotny L. Coherence measurements with the two-photon Michelson interferometer[J]. Physical Review A, 2012, 86(2): 023820.

[46] 雒怡, 姜恩春. 基于二阶量子相干的定位与时钟同步方法[J]. 现代导航, 2012, 3(6): 456-461.

    Luo Y, Jiang E C. Positioning and clock synchronization based on second-order quantum coherence[J]. Modern Navigation, 2012, 3(6): 456-461.

[47] 丛红璐, 任学藻. Tavis-Cummings模型的能谱和量子纠缠的精确解[J]. 激光与光电子学进展, 2017, 54(9): 092701.

    Cong H L, Ren X Z. Exact solutions of energy spectrum and quantum entanglement in Tavis-Cummings model[J]. Laser & Optoelectronics Progress, 2017, 54(9): 092701.

[48] 肖俊俊. 量子导航定位中的测量技术实验研究[D]. 上海: 上海交通大学, 2014: 16-36.

    Xiao J J. Research of measuring technology based on quantum navigation and position[D]. Shanghai: Shanghai Jiao Tong University, 2014: 16-36.

[49] 翟淑琴, 张姚. 基于线性光学的双通道混合纠缠操控[J]. 中国激光, 2016, 43(11): 1112002.

    Zhai S Q, Zhang Y. Duplex hybrid entanglement manipulation based on linear optics[J]. Chinese Journal of Lasers, 2016, 43(11): 1112002.

[50] 杨春燕, 吴德伟, 余永林, 等. 量子多结构分组纠缠到达时间测量增强方法[J]. 北京邮电大学学报, 2011, 34(6): 33-37.

    Yang C Y, Wu D W, Yu Y L, et al. Enhancement of the time of arrival measuring by utilizing multi-structured grouped-entangled quantum pulse[J]. Journal of Beijing University of Posts and Telecommunications, 2011, 34(6): 33-37.

[51] 王希, 陈树新, 吴德伟, 等. 双模压缩光量子测距方案[J]. 光学学报, 2016, 36(7): 0727001.

    Wang X, Chen S X, Wu D W, et al. Quantum ranging scheme based on two-mode squeezing light[J]. Acta Optica Sinica, 2016, 36(7): 0727001.

[52] 杨春燕, 吴德伟, 余永林, 等. 干涉式量子定位系统最优星座分布研究[J]. 测绘通报, 2009(12): 1-6.

    Yang C Y, Wu D W, Yu Y L, et al. Research on optimal constellation distribution of interferometric quantum positioning system[J]. Bulletin of Surveying and Mapping, 2009(12): 1-6.

[53] 李永放, 王兆华, 李百宏, 等. 脉冲激光作用下的量子定位实验方案的设计及分析[J]. 光子学报, 2010, 39(10): 1811-1815.

    Li Y F, Wang Z H, Li B H, et al. Experimental scheme design and analysis for the quantum spatial positioning with pulse laser[J]. Acta Photonica Sinica, 2010, 39(10): 1811-1815.

[54] 王志刚, 杨绚, 邓逸凡. 近地空间航天器量子导航定位算法[J]. 飞行力学, 2015, 33(6): 551-554.

    Wang Z G, Yang X, Deng Y F. Research on the near-earth spacecraft quantum positioning determinacy algorithm[J]. Flight Dynamics, 2015, 33(6): 551-554.

[55] 郭建军, 郭邦红, 程广明, 等. 光子轨道角动量在量子通信中应用的研究进展[J]. 激光与光电子学进展, 2012, 49(8): 080003.

    Guo J J, Guo B H, Cheng G M, et al. Research progress on photon orbital angular momentum in quantum communication applications[J]. Laser & Optoelectronics Progress, 2012, 49(8): 080003.

[56] 朱宇, 石磊, 魏家华, 等. 移动量子密钥分发技术进展[J]. 激光与光电子学进展, 2017, 54(12): 120004.

    Zhu Y, Shi L, Wei J H, et al. Progress in mobile quantum key distribution technique[J]. Laser & Optoelectronics Progress, 2017, 54(12): 120004.

[57] 丛爽, 汪海伦, 邹紫盛, 等. 量子导航定位系统中的捕获和粗跟踪技术[J]. 空间控制技术与应用, 2017, 43(1): 1-10.

    Cong S, Wang H L, Zou Z S, et al. Techniques of acquisition and coarse tracking in the quantum navigation and positioning system[J]. Aerospace Control and Application, 2017, 43(1): 1-10.

[58] 江昊, 王建宇, 贾建军, 等. 空间量子通信粗跟踪系统设计研究[J]. 光通信技术, 2012, 36(6): 43-46.

    Jiang H, Wang J Y, Jia J J, et al. The design and research of coarse tracking system for space quantum communication[J]. Optical Communication Technology, 2012, 36(6): 43-46.

[59] 林均仰, 王建宇, 张亮, 等. 高带宽量子通信信标跟踪技术研究[J]. 光通信技术, 2010, 34(7): 57-59.

    Lin J Y, Wang J N, Zhang L, et al. Research on high-bandwidth technology for quantum communication ATP system[J]. Optical Communication Technology, 2010, 34(7): 57-59.

[60] Gustavson T L, Bouyer P, Kasevich M A. Dual-atomic-beam matter-wave gyroscope[J]. Proceedings of SPIE, 1998, 3270: 62-69.

[61] Gustavson T L, Landragin A, Kasevich M A. Rotation sensing with a dual atom-interferometer Sagnac gyroscope[J]. Classical and Quantum Gravity, 2000, 17(12): 2385-2398.

[62] Durfee D S, Shaham Y K, Kasevich M A. Long-term stability of an area-reversible atom-interferometer Sagnac gyroscope[J]. Physical Review Letters, 2006, 97(24): 240801.

[63] Stockton J K, Takase K, Kasevich M A. Absolute geodetic rotation measurement using atom interferometry[J]. Physical Review Letters, 2011, 107(13): 133001.

[64] Gustavson T L, Bouyer P, Kasevich M A. Precision rotation measurements with an atom interferometer gyroscope[J]. Physical Review Letters, 1997, 78(11): 2046-2049.

[65] Canuel B, Leduc F, Holleville D, et al. Six-axis inertial sensor using cold-atom interferometry[J]. Physical Review Letters, 2006, 97(1): 010402.

[66] Gauguet A, Canuel B, Lévèque T, et al. Characterization and limits of a cold-atom Sagnac interferometer[J]. Physical Review A, 2009, 80(6): 063604.

[67] Canuel B, Leduc F, Holleville D, et al. A cold atom interferometer for high precision inertial measurements[C]∥2004 Conference on Precision Electromagnetic Measurements, 2004: 113-114.

[68] Tackmann G, Berg P, Schubert C, et al. Self-alignment of a compact large-area atomic Sagnac interferometer[J]. New Journal of Physics, 2012, 14(1): 015002.

[69] Müller T, Gilowski M, Zaiser M, et al. A compact dual atom interferometer gyroscope based on laser-cooled rubidium[J]. The European Physical Journal D, 2009, 53(3): 273-281.

[70] Larsen M, Bulatowicz M. Nuclear magnetic resonance gyroscope[C]∥2012 IEEE International Frequency Control Symposium, 2012: 1-5.

[71] 陆璇辉, 王将峰. 基于原子干涉的量子陀螺仪[J]. 红外与激光工程, 2007, 36(3): 293-295.

    Lu X H, Wang J F. Quantum gyroscope based on an atom interferometer[J]. Infrared and Laser Engineering, 2007, 36(3): 293-295.

[72] 陈霞, 郑孝天. 原子干涉陀螺仪关键技术与研究进展[J]. 光学与光电技术, 2013, 11(5): 65-70.

    Chen X, Zheng X T. Research progress and key technologies of interferometric atom gyroscope[J]. Optics & Optoelectronic Technology, 2013, 11(5): 65-70.

[73] Xue H B, Feng Y Y, Chen S, et al. A continuous cold atomic beam interferometer[J]. Journal of Applied Physics, 2015, 117(9): 094901.

[74] 王锴, 姚战伟, 鲁思滨, 等. 新一代惯性测量仪器: 拉曼型原子干涉陀螺仪[J]. 量子电子学报, 2016, 33(5): 513-523.

    Wang K, Yao Z W, Lu S B, et al. A new generation of inertial measurement instrument: Raman-type atom interferometric gyroscope[J]. Chinese Journal of Quantum Electronics, 2016, 33(5): 513-523.

[75] Mandel T. Quantum manipulation of (ultra-)cold atom systems for information processing[D]. Heidelberg: Ruperto-Carola University of Heidelberg, 2014.

[76] Sun W, Wang B Z, Xu X T, et al. Long-lived 2D spin-orbit coupled topological Bose gas[EB/OL]. (2017-10-02)[2018-01-10]. https:∥arxiv.org/abs/1710.00717.

[77] 楚中毅, 孙晓光, 万双爱, 等. 原子自旋陀螺仪核自旋磁场自补偿系统[J]. 仪器仪表学报, 2013, 34(11): 2579-2584.

    Chu Z Y, Sun X G, Wan S A, et al. Nuclear spin magnetic field self-compensation system for atomic spin gyroscope[J]. Chinese Journal of Scientific Instrument, 2013, 34(11): 2579-2584.

[78] 周斌权, 郝杰鹏, 梁晓阳, 等. 原子自旋陀螺气室加热电磁噪声抑制实验研究[J]. 北京航空航天大学学报, 2018, 44(1): 36-42.

    Zhou B Q, Hao J P, Liang X Y, et al. Experimental study on electromagnetic noise suppression of atomic spin gyroscope heating chamber[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(1): 36-42.

[79] Yang D, Chen L, Jia Y C, et al. Noise suppression for the differential detection in nuclear magnetic resonance gyroscope[C]∥Optoelectronics and Micro/Nano-Optics, 2017: 57.

[80] http:∥military.china.com/news/568/20160901/23442110.html.

[81] 王春娥, 秦杰. 核磁共振陀螺用高均匀磁场线圈设计方法[J]. 导航定位与授时, 2017, 4(1): 89-93.

    Wang C E, Qin J. Design method of high uniform magnetic coil for nuclear magnetic resonance gyroscope[J]. Navigation Positioning & Timing, 2017, 4(1): 89-93.

[82] 易鑫, 汪之国, 夏涛, 等. 核磁共振陀螺中原子气室温度场的研究[J]. 中国光学, 2016, 9(6): 671-677.

    Yi X, Wang Z G, Xia T, et al. Research on temperature field in the vapor cell of nuclear magnetic resonance gyroscope[J]. Chinese Optics, 2016, 9(6): 671-677.

[83] 李攀, 刘元正, 王继良. 核磁共振陀螺多层磁屏蔽系统优化设计[J]. 中国惯性技术学报, 2016, 24(3): 383-389.

    Li P, Liu Y Z, Wang J L. Optimization design of multilayer magnetic shield for nuclear magnetic resonance gyroscopes[J]. Journal of Chinese Inertial Technology, 2016, 24(3): 383-389.

[84] 王占元. 量子保密通信安全性浅析[J]. 中国科技信息, 2016(19): 24-25.

    Wang Z Y. Security analysis of quantum cryptography[J]. China Science and Technology Information, 2016(19): 24-25.

[85] Peng C Z, Yang T, Bao X H, et al. Experimental free-space distribution of entangled photon pairs over 13 km: towards satellite-based global quantum communication[J]. Physical Review Letters, 2005, 94(15): 150501.

[86] Liao S K, Cai W Q, Liu W Y, et al. Satellite-to-ground quantum key distribution[J]. Nature, 2017, 549(7670): 43-47.

[87] Yin J, Cao Y, Li Y H, et al. Satellite-based entanglement distribution over 1200 kilometers[J]. Science, 2017, 356(6343): 1140-1144.

宋培帅, 马静, 马哲, 张淑媛, 司朝伟, 韩国威, 宁瑾, 杨富华, 王晓东. 量子定位导航技术研究与发展现状[J]. 激光与光电子学进展, 2018, 55(9): 090003. Song Peishuai, Ma Jing, Ma Zhe, Zhang Shuyuan1, Si Chaowei, Han Guowei, Ning Jin, Yang Fuhua, Wang Xiaodong. Research and Development Status of Quantum Navigation Technology[J]. Laser & Optoelectronics Progress, 2018, 55(9): 090003.

本文已被 4 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!