激光与光电子学进展, 2018, 55 (9): 090003, 网络出版: 2018-09-08   

量子定位导航技术研究与发展现状 下载: 2363次

Research and Development Status of Quantum Navigation Technology
作者单位
1 中国科学院半导体研究所半导体集成技术工程研究中心, 北京 100083
2 中国科学院大学电子电气与通信工程学院, 北京 101408
3 中国科学院大学微电子学院, 北京 101408
摘要
最近二十年, 作为一种新型导航技术, 量子定位系统(QPS)因其特有的信息传输优势得到了飞速发展。简要介绍了卫星导航与惯性导航系统的原理及各自面临的问题, 阐述了量子定位导航系统的概念与基本原理、量子导航的优势、量子导航的分类及国内外发展状况, 并就目前量子导航所面临的问题及其发展前景提出了相应的观点。
Abstract
In recent twenty years, the quantum positioning system has developed rapidly as a new type of navigation technology because of its unique advantages in information transmission. After the introduction of the satellite navigation and inertial navigation systems and their respective problems, we mainly elaborate the proposition, fundamental principles, advantages and classification of quantum navigation. The research status of quantum navigation is also summarized. Finally, we put forward our views on current problems and prospects of the quantum navigation system.
参考文献

[1] Horodecki R, Horodecki P, Horodecki M, et al. Quantum entanglement[J]. Reviews of Modern Physics, 2009, 81(2): 865-942.

[2] Terhal B M. Detecting quantum entanglement[J]. Theoretical Computer Science, 2002, 287(1): 313-335.

[3] Walls D F. Squeezed states of light[J]. Nature, 1983, 306(5939): 141-146.

[4] 于祖荣. 量子光学中的非经典态[J]. 物理学进展, 1999, 19(1): 72-95.

    Yu Z R. Non-classical states in the quantum optics[J]. Progress in Physics, 1999, 19(1): 72-95.

[5] 彭堃墀. 压缩态纠缠与连续变量纠缠交换[J]. 激光与光电子学进展, 2005, 42(12): 7-8.

    Peng K C.Squeezed state entanglement and continuous variable entanglement swapping[J]. Laser & Optoelectronics Progress, 2005, 42(12): 7-8.

[6] 邹宏新. 新一代惯性导航技术: 量子导航[J]. 国防科技, 2014, 35(6): 19-24.

    Zou H X. The inertial navigation technology of next generation: quantum navigation[J]. National Defense Science & Technology, 2014, 35(6): 19-24.

[7] 张欢阳, 张冠杰, 林象平. GPS的未来: 量子定位系统[J]. 舰船电子工程, 2004, 24(5): 40-43.

    Zhang H Y, Zhang G J, Lin X P. The future of GPS-quantum positioning system[J]. Ship Electronic Engineering, 2004, 24(5): 40-43.

[8] 许方星. 简析量子定位技术及应用前景[J]. 科技资讯, 2014, 12(22): 7.

    Xu F X. Introduction of the quantum positioning system and its application[J]. Science & Technology Information, 2014, 12(22): 7.

[9] 李润兵, 王谨, 詹明生. 新一代惯性导航技术:冷原子陀螺仪[J]. 全球定位系统, 2010, 35(4): 1-5.

    Li R B, Wang J, Zhan M S. New generation inertial navigation technology: cold atom gyroscope[J]. GNSS World of China, 2010, 35(4): 1-5.

[10] 王杰华, 石卫平. 国外卫星导航定位系统的应用体制及政策[J]. 中国测绘, 2010(1): 40-43.

    Wang J H, Shi W P.The application system and policy of foreign satellite navigation and positioning system[J]. China Surveying and Mapping, 2010(1): 40-43.

[11] 周楠. GPS如何测定方位[J]. 科学世界, 2012(2): 22-25.

    Zhou N. How does GPS determine the orientation[J]. Science World, 2012(2): 22-25.

[12] 王文贯, 唐诗华. GPS卫星定位误差概论[J]. 测绘与空间地理信息, 2006, 29(5): 39-42.

    Wang W G, Tang S H. Conspectus of GPS surveying errors[J]. Geomatics & Spatial Information Technology, 2006, 29(5): 39-42.

[13] 张树侠, 孙静. 捷联式惯性导航系统[M]. 北京:国防工业出版社, 1992.

    Zhang S X, Sun J. Strapdown inertial navigation system[M]. Beijing: National Defense Industry Press, 1992.

[14] 周徐昌, 沈建森. 惯性导航技术的发展及其应用[J]. 兵工自动化, 2006, 25(9): 55-56.

    Zhou X C, Shen J S. Development of inertial navigation technology and its applications[J]. Ordnance Industry Automation, 2006, 25(9): 55-56.

[15] 董进武. 惯性导航技术浅析[J]. 仪表技术, 2017(1): 41-43.

    Dong J W. Analysis on inertial navigation technology[J]. Instrumentation Technology, 2017(1): 41-43.

[16] 熊必凤. 低成本MEMS陀螺仪随机漂移误差的建模及修正[D]. 重庆: 西南大学, 2017.

    Xiong B F. Research on the modeling and correction technology of random drift error of low cost MEMS gyroscope[D]. Chongqing: Southwest University, 2017.

[17] 王新龙. 惯性导航基础[M]. 西安: 西北工业大学出版社, 2013: 67-70.

    Wang X L. Inertial navigation foundation[M]. Xi′an: Northwestern Polytechnical University Press, 2013: 67-70.

[18] 马建军, 李文强, 郑志强. MIMU随机误差分析与建模[J]. 压电与声光, 2007, 29(4): 483-486.

    Ma J J, Li W Q, Zheng Z Q. Analyzing and modeling for stochastic error of MIMU[J]. Piezoelectrics & Acoustooptics, 2007, 29(4): 483-486.

[19] 杜小菁, 翟峻仪. 基于MEMS的微型惯性导航技术综述[J]. 飞航导弹, 2014(9): 77-81.

    Du X J, Zhai J Y. Summary of micro inertial navigation technology based on MEMS[J]. Aerodynamic Missile Journal, 2014(9): 77-81.

[20] Syed Z F, Aggarwal P, Goodall C, et al. A new multi-position calibration method for MEMS inertial navigation systems[J]. Measurement Science & Technology, 2007, 18(7): 1897-1907.

[21] 张谦, 王玮, 王蕾, 等. 基于动态Allan方差的光纤陀螺随机误差分析及算法改进[J]. 光学学报, 2015, 35(4): 0406003.

    Zhang Q, Wang W, Wang L, et al. Research on random errors of fiber optic gyro based on dynamic Allan variance and algorithm improvement[J]. Acta Optica Sinica, 2015, 35(4): 0406003.

[22] 张娜, 李绪友. 动态Allan方差的理论改进及其应用研究[J]. 光学学报, 2011, 31(11): 1106003.

    Zhang N, Li X Y. Research on theoretical improvement of dynamic Allan variance and its application[J]. Acta Optica Sinica, 2011, 31(11): 1106003.

[23] 李晓莹, 胡敏, 张鹏, 等. 交叠式Allan方差在微机械陀螺随机误差辨识中的应用[J]. 西北工业大学学报, 2007, 25(2): 225-229.

    Li X Y, Hu M, Zhang P, et al. Applying overlapping Allan variance theory to better stochastic modeling of microgyro[J]. Journal of Northwestern Polytechnical University, 2007, 25(2): 225-229.

[24] Giovannetti V, Lloyd S, Maccone L. Quantum-enhanced positioning and clock synchronization[J]. Nature, 2001, 412(6845): 417-419.

[25] Schrdinger E. The current situation in quantum mechanics (1935)[M]. Wiesbaden: Vieweg+Teubner Verlag, 1984: 98-129.

[26] Sackett C A, Kielpinski D, King B E, et al. Experimental entanglement of four particles[J]. Nature, 2000, 404(6775): 256-259.

[27] Hagley E, Matre X, Nogues G, et al. Generation of Einstein-Podolsky-Rosen pairs of atoms[J]. Physical Review Letters, 1997, 79(1): 1-5.

[28] Shih Y H, Alley C O. New type of Einstein-Podolsky-Rosen-Bohm experiment using pairs of light quanta produced by optical parametric down conversion[J]. Physical Review Letters, 1988, 61(26): 2921-2924.

[29] 牛孝灵. 纠缠光子的制备和应用[D]. 合肥: 中国科学技术大学, 2009.

    Niu X L. Preparation and application of entangled photons[D]. Hefei: University of Science and Technology of China, 2009.

[30] 吴华, 王向斌, 潘建伟. 量子通信现状与展望[J]. 中国科学: 信息科学, 2014, 44(3): 296-311.

    Wu H, Wang X B, Pan J W. Quantum communication: status and prospects[J]. Scientia Sinica (Informationis), 2014, 44(3): 296-311.

[31] Zhao Z, Yang T, Chen Y A, et al. Experimental test of quantum nonlocality in four-photon Greenberger-Horne-Zeilinger entanglement[J]. Physics, 2003, 91(18): 11173-11186.

[32] Zhao Z, Chen Y A, Zhang A N, et al. Experimental demonstration of five-photon entanglement and open-destination teleportation[J]. Nature, 2004, 430(6995): 54-58.

[33] Lu C Y, Zhou X Q, Gühne O, et al. Experimental entanglement of six photons in graph states[J]. Nature Physics, 2007, 3(2): 91-95.

[34] Yao X C, Wang T X, Xu P, et al. Observation of eight-photon entanglement[J]. Nature Photonics,2012, 6(4): 225-228.

[35] Wang X L, Chen L K, Li W, et al. Experimental ten-photon entanglement[J]. Physical Review Letters, 2016, 117(21): 210502.

[36] 徐剑秋, 楼祺洪, 宁东, 等. 受激拉曼散射中的二阶量子关联[J]. 光学学报, 1997, 17(9) : 70-73.

    Xu J Q, Lou Q H, Ning D, et al. Second order quantum correlation in stimulated Raman scattering[J]. Acta Optica Sinica, 1997, 17(9) : 70-73.

[37] 英国研制量子导航定位系统QPS精确度比GPS更高[EB/OL]. (2014-05-19)[2018-01-08]. http://scitech.people.com.cn/n/2014/0519/c1057-25032697.html.

    The UK developed the quantum navigation positioning system: the QPS accuracy is higher than that of GPS[EB/OL]. (2014-05-19)[2018-01-08]. http://scitech.people.com.cn/n/2014/0519/c1057-25032697.html.

[38] Giovannetti V, Lloyd S, Maccone L. Advances in quantum metrology[J]. Nature Photonics, 2011, 5(4): 222-229.

[39] Maccone L, Giovannetti V. Quantum metrology: beauty and the noisy beast[J]. Nature Physics, 2011, 7(5): 376-377.

[40] Giovannetti V, Lloyd S, Maccone L, et al. Conveyor-belt clock synchronization[J]. Physical Review A, 2004, 70(4): 043808.

[41] Valencia A, Scarcelli G, Shih Y. Distant clock synchronization using entangled photon pairs[J]. Applied Physics Letters, 2004, 85(13): 2655-2657.

[42] Bahder T B. Quantum positioning system[C]∥36th Annual Precise Time and Time Interval (PTTI) Meeting, 2005: 423-427.

[43] Villoresi P, Jennewein T, Tamburini F, et al. Experimental verification of the feasibility of a quantum channel between space and Earth[J]. New Journal of Physics, 2008, 10(3): 033038.

[44] Ben-Av R, Exman I. Optimized multiparty quantum clock synchronization[J]. Physical Review A, 2011, 84(1): 014301.

[45] Lopez-Mago D, Novotny L. Coherence measurements with the two-photon Michelson interferometer[J]. Physical Review A, 2012, 86(2): 023820.

[46] 雒怡, 姜恩春. 基于二阶量子相干的定位与时钟同步方法[J]. 现代导航, 2012, 3(6): 456-461.

    Luo Y, Jiang E C. Positioning and clock synchronization based on second-order quantum coherence[J]. Modern Navigation, 2012, 3(6): 456-461.

[47] 丛红璐, 任学藻. Tavis-Cummings模型的能谱和量子纠缠的精确解[J]. 激光与光电子学进展, 2017, 54(9): 092701.

    Cong H L, Ren X Z. Exact solutions of energy spectrum and quantum entanglement in Tavis-Cummings model[J]. Laser & Optoelectronics Progress, 2017, 54(9): 092701.

[48] 肖俊俊. 量子导航定位中的测量技术实验研究[D]. 上海: 上海交通大学, 2014: 16-36.

    Xiao J J. Research of measuring technology based on quantum navigation and position[D]. Shanghai: Shanghai Jiao Tong University, 2014: 16-36.

[49] 翟淑琴, 张姚. 基于线性光学的双通道混合纠缠操控[J]. 中国激光, 2016, 43(11): 1112002.

    Zhai S Q, Zhang Y. Duplex hybrid entanglement manipulation based on linear optics[J]. Chinese Journal of Lasers, 2016, 43(11): 1112002.

[50] 杨春燕, 吴德伟, 余永林, 等. 量子多结构分组纠缠到达时间测量增强方法[J]. 北京邮电大学学报, 2011, 34(6): 33-37.

    Yang C Y, Wu D W, Yu Y L, et al. Enhancement of the time of arrival measuring by utilizing multi-structured grouped-entangled quantum pulse[J]. Journal of Beijing University of Posts and Telecommunications, 2011, 34(6): 33-37.

[51] 王希, 陈树新, 吴德伟, 等. 双模压缩光量子测距方案[J]. 光学学报, 2016, 36(7): 0727001.

    Wang X, Chen S X, Wu D W, et al. Quantum ranging scheme based on two-mode squeezing light[J]. Acta Optica Sinica, 2016, 36(7): 0727001.

[52] 杨春燕, 吴德伟, 余永林, 等. 干涉式量子定位系统最优星座分布研究[J]. 测绘通报, 2009(12): 1-6.

    Yang C Y, Wu D W, Yu Y L, et al. Research on optimal constellation distribution of interferometric quantum positioning system[J]. Bulletin of Surveying and Mapping, 2009(12): 1-6.

[53] 李永放, 王兆华, 李百宏, 等. 脉冲激光作用下的量子定位实验方案的设计及分析[J]. 光子学报, 2010, 39(10): 1811-1815.

    Li Y F, Wang Z H, Li B H, et al. Experimental scheme design and analysis for the quantum spatial positioning with pulse laser[J]. Acta Photonica Sinica, 2010, 39(10): 1811-1815.

[54] 王志刚, 杨绚, 邓逸凡. 近地空间航天器量子导航定位算法[J]. 飞行力学, 2015, 33(6): 551-554.

    Wang Z G, Yang X, Deng Y F. Research on the near-earth spacecraft quantum positioning determinacy algorithm[J]. Flight Dynamics, 2015, 33(6): 551-554.

[55] 郭建军, 郭邦红, 程广明, 等. 光子轨道角动量在量子通信中应用的研究进展[J]. 激光与光电子学进展, 2012, 49(8): 080003.

    Guo J J, Guo B H, Cheng G M, et al. Research progress on photon orbital angular momentum in quantum communication applications[J]. Laser & Optoelectronics Progress, 2012, 49(8): 080003.

[56] 朱宇, 石磊, 魏家华, 等. 移动量子密钥分发技术进展[J]. 激光与光电子学进展, 2017, 54(12): 120004.

    Zhu Y, Shi L, Wei J H, et al. Progress in mobile quantum key distribution technique[J]. Laser & Optoelectronics Progress, 2017, 54(12): 120004.

[57] 丛爽, 汪海伦, 邹紫盛, 等. 量子导航定位系统中的捕获和粗跟踪技术[J]. 空间控制技术与应用, 2017, 43(1): 1-10.

    Cong S, Wang H L, Zou Z S, et al. Techniques of acquisition and coarse tracking in the quantum navigation and positioning system[J]. Aerospace Control and Application, 2017, 43(1): 1-10.

[58] 江昊, 王建宇, 贾建军, 等. 空间量子通信粗跟踪系统设计研究[J]. 光通信技术, 2012, 36(6): 43-46.

    Jiang H, Wang J Y, Jia J J, et al. The design and research of coarse tracking system for space quantum communication[J]. Optical Communication Technology, 2012, 36(6): 43-46.

[59] 林均仰, 王建宇, 张亮, 等. 高带宽量子通信信标跟踪技术研究[J]. 光通信技术, 2010, 34(7): 57-59.

    Lin J Y, Wang J N, Zhang L, et al. Research on high-bandwidth technology for quantum communication ATP system[J]. Optical Communication Technology, 2010, 34(7): 57-59.

[60] Gustavson T L, Bouyer P, Kasevich M A. Dual-atomic-beam matter-wave gyroscope[J]. Proceedings of SPIE, 1998, 3270: 62-69.

[61] Gustavson T L, Landragin A, Kasevich M A. Rotation sensing with a dual atom-interferometer Sagnac gyroscope[J]. Classical and Quantum Gravity, 2000, 17(12): 2385-2398.

[62] Durfee D S, Shaham Y K, Kasevich M A. Long-term stability of an area-reversible atom-interferometer Sagnac gyroscope[J]. Physical Review Letters, 2006, 97(24): 240801.

[63] Stockton J K, Takase K, Kasevich M A. Absolute geodetic rotation measurement using atom interferometry[J]. Physical Review Letters, 2011, 107(13): 133001.

[64] Gustavson T L, Bouyer P, Kasevich M A. Precision rotation measurements with an atom interferometer gyroscope[J]. Physical Review Letters, 1997, 78(11): 2046-2049.

[65] Canuel B, Leduc F, Holleville D, et al. Six-axis inertial sensor using cold-atom interferometry[J]. Physical Review Letters, 2006, 97(1): 010402.

[66] Gauguet A, Canuel B, Lévèque T, et al. Characterization and limits of a cold-atom Sagnac interferometer[J]. Physical Review A, 2009, 80(6): 063604.

[67] Canuel B, Leduc F, Holleville D, et al. A cold atom interferometer for high precision inertial measurements[C]∥2004 Conference on Precision Electromagnetic Measurements, 2004: 113-114.

[68] Tackmann G, Berg P, Schubert C, et al. Self-alignment of a compact large-area atomic Sagnac interferometer[J]. New Journal of Physics, 2012, 14(1): 015002.

[69] Müller T, Gilowski M, Zaiser M, et al. A compact dual atom interferometer gyroscope based on laser-cooled rubidium[J]. The European Physical Journal D, 2009, 53(3): 273-281.

[70] Larsen M, Bulatowicz M. Nuclear magnetic resonance gyroscope[C]∥2012 IEEE International Frequency Control Symposium, 2012: 1-5.

[71] 陆璇辉, 王将峰. 基于原子干涉的量子陀螺仪[J]. 红外与激光工程, 2007, 36(3): 293-295.

    Lu X H, Wang J F. Quantum gyroscope based on an atom interferometer[J]. Infrared and Laser Engineering, 2007, 36(3): 293-295.

[72] 陈霞, 郑孝天. 原子干涉陀螺仪关键技术与研究进展[J]. 光学与光电技术, 2013, 11(5): 65-70.

    Chen X, Zheng X T. Research progress and key technologies of interferometric atom gyroscope[J]. Optics & Optoelectronic Technology, 2013, 11(5): 65-70.

[73] Xue H B, Feng Y Y, Chen S, et al. A continuous cold atomic beam interferometer[J]. Journal of Applied Physics, 2015, 117(9): 094901.

[74] 王锴, 姚战伟, 鲁思滨, 等. 新一代惯性测量仪器: 拉曼型原子干涉陀螺仪[J]. 量子电子学报, 2016, 33(5): 513-523.

    Wang K, Yao Z W, Lu S B, et al. A new generation of inertial measurement instrument: Raman-type atom interferometric gyroscope[J]. Chinese Journal of Quantum Electronics, 2016, 33(5): 513-523.

[75] Mandel T. Quantum manipulation of (ultra-)cold atom systems for information processing[D]. Heidelberg: Ruperto-Carola University of Heidelberg, 2014.

[76] Sun W, Wang B Z, Xu X T, et al. Long-lived 2D spin-orbit coupled topological Bose gas[EB/OL]. (2017-10-02)[2018-01-10]. https:∥arxiv.org/abs/1710.00717.

[77] 楚中毅, 孙晓光, 万双爱, 等. 原子自旋陀螺仪核自旋磁场自补偿系统[J]. 仪器仪表学报, 2013, 34(11): 2579-2584.

    Chu Z Y, Sun X G, Wan S A, et al. Nuclear spin magnetic field self-compensation system for atomic spin gyroscope[J]. Chinese Journal of Scientific Instrument, 2013, 34(11): 2579-2584.

[78] 周斌权, 郝杰鹏, 梁晓阳, 等. 原子自旋陀螺气室加热电磁噪声抑制实验研究[J]. 北京航空航天大学学报, 2018, 44(1): 36-42.

    Zhou B Q, Hao J P, Liang X Y, et al. Experimental study on electromagnetic noise suppression of atomic spin gyroscope heating chamber[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(1): 36-42.

[79] Yang D, Chen L, Jia Y C, et al. Noise suppression for the differential detection in nuclear magnetic resonance gyroscope[C]∥Optoelectronics and Micro/Nano-Optics, 2017: 57.

[80] http:∥military.china.com/news/568/20160901/23442110.html.

[81] 王春娥, 秦杰. 核磁共振陀螺用高均匀磁场线圈设计方法[J]. 导航定位与授时, 2017, 4(1): 89-93.

    Wang C E, Qin J. Design method of high uniform magnetic coil for nuclear magnetic resonance gyroscope[J]. Navigation Positioning & Timing, 2017, 4(1): 89-93.

[82] 易鑫, 汪之国, 夏涛, 等. 核磁共振陀螺中原子气室温度场的研究[J]. 中国光学, 2016, 9(6): 671-677.

    Yi X, Wang Z G, Xia T, et al. Research on temperature field in the vapor cell of nuclear magnetic resonance gyroscope[J]. Chinese Optics, 2016, 9(6): 671-677.

[83] 李攀, 刘元正, 王继良. 核磁共振陀螺多层磁屏蔽系统优化设计[J]. 中国惯性技术学报, 2016, 24(3): 383-389.

    Li P, Liu Y Z, Wang J L. Optimization design of multilayer magnetic shield for nuclear magnetic resonance gyroscopes[J]. Journal of Chinese Inertial Technology, 2016, 24(3): 383-389.

[84] 王占元. 量子保密通信安全性浅析[J]. 中国科技信息, 2016(19): 24-25.

    Wang Z Y. Security analysis of quantum cryptography[J]. China Science and Technology Information, 2016(19): 24-25.

[85] Peng C Z, Yang T, Bao X H, et al. Experimental free-space distribution of entangled photon pairs over 13 km: towards satellite-based global quantum communication[J]. Physical Review Letters, 2005, 94(15): 150501.

[86] Liao S K, Cai W Q, Liu W Y, et al. Satellite-to-ground quantum key distribution[J]. Nature, 2017, 549(7670): 43-47.

[87] Yin J, Cao Y, Li Y H, et al. Satellite-based entanglement distribution over 1200 kilometers[J]. Science, 2017, 356(6343): 1140-1144.

宋培帅, 马静, 马哲, 张淑媛, 司朝伟, 韩国威, 宁瑾, 杨富华, 王晓东. 量子定位导航技术研究与发展现状[J]. 激光与光电子学进展, 2018, 55(9): 090003. Song Peishuai, Ma Jing, Ma Zhe, Zhang Shuyuan1, Si Chaowei, Han Guowei, Ning Jin, Yang Fuhua, Wang Xiaodong. Research and Development Status of Quantum Navigation Technology[J]. Laser & Optoelectronics Progress, 2018, 55(9): 090003.

本文已被 4 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!