红外与激光工程, 2017, 46 (2): 0205005, 网络出版: 2017-03-31   

大功率CO2激光器输出窗口热性能分析

Analysis on thermal performance of output window in high power CO2 laser
作者单位
1 中国科学院长春光学精密机械与物理研究所 光电对抗技术创新研究室, 吉林 长春 130033
2 激光与物质相互作用国家重点实验室, 吉林 长春 130033
3 内蒙古化工职业学院 机电系, 内蒙古 呼和浩特 010070
摘要
为了研究大功率CO2激光发射过程中输出窗口吸收激光能量产生热性能变化的问题, 建立了输出窗口传热学和结构力学耦合非稳态模型, 通过对模型进行有限元分析得到表征输出窗口变化的温度、热变形和热应力等参数分布。首先, 针对大功率CO2激光特点, 讨论了输出窗口材料GaAs和ZnSe的物理特性。然后, 基于10 kW级大功率CO2激光器光学谐振腔结构和输出窗口材料物理特性, 建立了输出窗口传热学和结构力学的有限元模型。最后, 利用COMSOL软件对该模型进行求解, 得到以GaAs和ZnSe为材料的输出窗口的温度、热变形和热应力等参数分布, 并对比分析不同窗口材料对参数的影响。研究表明: 在10 kW级激光作用下, ZnSe窗口温升小于GaAs窗口; 两种输出窗口产生μm量级热变形; 由于GaAs材料的热导率高, GaAs窗口的热变形和热应力分布更为均匀。
Abstract
In order to study the thermal characteristic of output window during the working process of high power CO2 laser, a time-dependent model coupled with heat transfer and structure mechanic was established to calculate the distribution of temperature, thermal deformation and thermal stress. First, the physics characteristic of output window materials was discussed. Then, based on the resonant cavity structure of 10 kW TEA CO2 laser and the physics characteristic of output windows, a heat transfer and structure mechanic model was established. Finally, COMSOL finite element software was used to calculate the distribution of temperature, thermal deformation and thermal stress. The influence of different materials of output window on parameters was analyzed. The results indicate that the temperature rise of ZnSe output window is less than the GaAs output window when the output power is consistent for both materials; the deformation of output windows is in the range of μm dimension under the 10 kW laser power condition; the distribution of thermal deformation and thermal stress is more even in GaAs output window for its high heat transfer coefficient.
参考文献

[1] Yang Guilong, Li Dianjun, Xie Jijiang, et al. High power repetitive TEA CO2 pulsed laser [J]. Laser Physics, 2012, 22(7): 1173-1176.

[2] 汤伟, 郭劲, 邵俊峰, 等. 激光重频对脉冲非稳腔TEA CO2激光远场传输特性的影响分析[J]. 红外与激光工程, 2013, 42(9): 2380-2385.

    Tang Wei, Guo Jin, Shao Junfeng, et al. Analysis of far-field characteristics with repetition frequency of TEA CO2 laser[J]. Infrared and Laser Engineering, 2013, 42(9): 2380-2385. (in Chinese)

[3] 王玺, 卞进田, 李华, 等. 重频脉冲CO2激光损伤K9玻璃的实验[J]. 红外与激光工程, 2013, 42(5): 1204-1207.

    Wang Xi, Bian Jintian, Li Hua, et al. Experiment on damage in K9 glass due to repetition rate pulsed CO2 laser radiation [J]. Infrared and Laser Engineering, 2013, 42(5): 1204-1207. (in Chinese)

[4] 张阔, 陆君, 杨贵龙, 等. 大功率TEA CO2激光远场发散角评估方法[J]. 红外与激光工程, 2015, 44(8): 2286-2291.

    Zhang Kuo, Lu Jun, Yang Guilong, et al. Estimation of the far-field divergence of high power TEA CO2 laser[J]. Infrared and Laser Engineering, 2015, 44(8): 2286-2291. (in Chinese)

[5] 谢冀江, 李殿军, 张传胜, 等. 声光调Q CO2激光器[J]. 光学 精密工程, 2009, 17(5): 1008-1013.

    Xie Jijiang, Li Dianjun, Zhang Chuansheng, et al. Acousto-optically Q-switch CO2 laser [J]. Optics and Precision Engineering, 2009, 17(5): 1008-1013. (in Chinese)

[6] 库耕, 程祖海, 张耀宁, 等. 高功率激光反射镜变形的半导体致冷补偿的研究[J]. 中国激光, 1998, 25(2): 123-126.

    Ku Geng, Cheng Zuhai, Zhang Yaoning, et al. Research of laser reflectors cooled by a thermoelectric refrigerator[J]. Chinese Journal of Laser, 1998, 25(2): 123-126. (in Chinese)

[7] 余文峰, 孙峰, 程祖海, 等. 相变致冷镜的有限元结构优化[J]. 强激光与粒子束, 2004, 16(12): 1523-1526.

    Yu Wenfeng, Sun Feng, Cheng Zuhai, et al. Optimum design of phase-change cooling mirror′s fabrication by finite element method[J]. High Power Laser and Particle Beams, 2004, 16(12): 1523-1526. (in Chinese)

[8] 余亮英, 程祖海, 朱海红, 等. 热补偿腔镜热变形的研究[J]. 光学与光电技术, 2007, 5(2): 12-15.

    Yu Liangying, Cheng Zuhai, Zhu Haihong, et al. Thermal deformation for thermal compensation mirror[J]. Optics & Optoelectronic Technology, 2007, 5(2): 12-15. (in Chinese)

[9] Peng Yufeng, Cheng Zuhai, Zhang Yaoning, et al. Temperature distribution and thermal deformations of mirror substrates in laser resonators[J]. Apply Optics, 2001, 40(27): 4824-4830.

[10] 冯志庆, 白兰, 张增宝, 等. 高能激光反射镜热变形补偿[J].光学 精密工程, 2010, 18(8): 1781-1787 .

    Feng Zhiqing, Bai Lan, Zhang Zengbao, et al. Thermal deformation compensation of high-energy laser mirrors [J]. Optics and Precision Engineering, 2010, 18(8): 1781-1787. (in Chinese)

[11] Peng Yufeng, Sheng Zhaoxia, Zhang Hu, et al. Influence of thermal deformations of the output windows of high-power laser system on beam characteristics[J]. Apply Optics, 2004, 43(35): 6465-6472.

[12] 孙峰, 程祖海, 张耀宁, 等. 在波长1.315 μm下的几种激光器窗口热效应比较研究[J]. 中国激光, 2004, 31(4): 412-416.

    Sun Feng, Cheng Zuhai, Zhang Yaoning, et al. Thermal distortions in Calcium Fluoride, Potassium Chloride and Fused Silica windows at 1.315 μm[J]. Chinese Journal of Lasers, 2004, 31(4): 412-416. (in Chinese)

[13] 安建祝, 李有宽, 杜祥琬. 激光窗口热透镜效应对光束质量的影响[J]. 强激光与粒子束, 2004, 16(4): 429-433.

    An Jianzhu, Li Youkuan, Du Xiangwan. Influence of laser window′s thermal lensing effect on beam quality[J]. High Power Laser and Particle Beam, 2004, 16(4): 429-433. (in Chinese)

张阔, 陈飞, 李若斓, 杨贵龙. 大功率CO2激光器输出窗口热性能分析[J]. 红外与激光工程, 2017, 46(2): 0205005. Zhang Kuo, Chen Fei, Li Ruolan, Yang Guilong. Analysis on thermal performance of output window in high power CO2 laser[J]. Infrared and Laser Engineering, 2017, 46(2): 0205005.

本文已被 7 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!