光学学报, 2011, 31 (9): 0900122, 网络出版: 2011-08-29  

铁电晶体畴壁增强非线性性质的研究

Study on Enhanced Nonlinearity in Ferroelectric Domain Wall
作者单位
1 上海交通大学物理系, 上海 200240
2 中国工程物理研究院激光聚变研究中心, 四川 绵阳 621900
引用该论文

陈险峰, 邓学伟, 任怀瑾, 安宁. 铁电晶体畴壁增强非线性性质的研究[J]. 光学学报, 2011, 31(9): 0900122.

Chen Xianfeng, Deng Xuewei, Ren Huaijin, An Ning. Study on Enhanced Nonlinearity in Ferroelectric Domain Wall[J]. Acta Optica Sinica, 2011, 31(9): 0900122.

参考文献

[1] F. Zernike, J. E. Midwinter. Applied Nonlinear Optics [M]. New York: Wiley, 1973

[2] M. M. Fejer, G. A. Magel, D. H. Jundt et al.. Quasi-phase-matched second harmonic generation: tuning and tolerances[J]. IEEE J. Quantum Electron., 1992, 28(11): 2631~2654

[3] S. Zhu, Y. Y. Zhu, N. B. Ming. Quasi-phase-matched third-harmonic generation in a quasi-periodic optical superlattice[J]. Science, 1977, 278(5539): 843~846

[4] Y. Kong, X. F. Chen, Y. X. Xia. Frequency conversion of femtosecond laser pulses in an engineered aperiodic poled optical superlattice[J]. Appl. Opt., 2007, 46(23): 5698~5702

[5] Y. Q. Qin, C. Zhang, Y. Y. Zhu et al.. Wave-front engineering by Huygens-Fresnel principle for nonlinear optical interactions in domain engineered structures[J]. Phys. Rev. Lett., 2008, 100(6): 063902

[6] R. Huang, X. Chen, J. Shi et al.. Pulse shaping by the electro-optic effect in chirped periodically poled lithium niobate[J]. Appl. Opt., 2007, 46(5): 795~799

[7] X. F. Chen, X. L. Zeng, Y. P. Chen et al.. Optimal design of broadened flat bandpass electro-optic phase modulator based on aperiodic domain-inverted grating[J]. J. Opt. A: Pure Appl. Opt., 2003, 5(3): 159~162

[8] X. F. Chen, J. H. Shi, Y. P. Chen et al.. Electro-optic Solc-type periodically poled wavelength filter in lithium niobate[J]. Opt. Lett., 2003, 28(21): 2115~2117

[9] T . J. Yang, V. Gopalan, P. J. Swart et al.. Direct observation of pinning and bowing of a single ferroelectric domain wall[J]. Phys. Rev. Lett., 1999, 82(20): 4106~4109

[10] T. Braun, W. Kleemann, J. Dec et al.. Creep and relaxation dynamics of domain walls in periodically poled KTiOPO4[J]. Phys. Rev. Lett., 2005, 94(11): 117601

[11] A. Fragemann, V. Pasiskevicius, F. Laurell. Second-order nonlinearities in the domain walls of periodically poled KTiOPO4[J]. Appl. Phys. Lett., 2004, 85(3): 375~377

[12] R. Fischer, S. M. Saltiel, D. N. Neshev et al.. Broadband femtosecond frequency doubling in random media[J]. Appl. Phys. Lett., 2006, 89(19): 191105

[13] S. J. Holmgren, C. Canalias, V. Pasiskevicius. Ultrashort single-shot pulse characterization with high spatial resolution using localized nonlinearities in ferroelectric domain walls[J]. Opt. Lett., 2007, 32(11): 1545~1547

[14] S. M. Saltiel, D. N. Neshev, R. Fischer et al.. Generation of second-harmonic conical waves via nonlinear Bragg diffraction[J]. Phys. Rev. Lett., 2008, 100(10): 103902

[15] S. M. Saltiel, D. N. Neshev, W. Krolikowski et al.. Multiorder nonlinear diffraction in frequency doubling processes[J]. Opt. Lett., 2009, 34(6): 848~850

[16] S. M. Saltiel, Y. Sheng, N. Voloch-Bloch et al.. Cerenkov-type second-harmonic generation in two-dimensional nonlinear photonic structures[J]. IEEE J. Quantum Electron., 2009, 45(11): 1465~1472

[17] Y. Sheng, S. M. Saltiel, W. Krolikowski et al.. Cherenkov-type second-harmonic generation with fundamental beams of different polarizations[J]. Opt. Lett., 2010, 35(9): 1317~1319

[18] Y. Zhang, F. M. Wang, K. Geren et al.. Second-harmonic imaging from a modulated domain structure[J]. Opt. Lett., 2010, 35(2): 178~180

[19] A. S. Aleksandrovsky, A. M. Vyunishev, A. I. Zaitsev et al.. Ultrashort pulses characterization by nonlinear diffraction from virtual beam[J]. Appl. Phys. Lett., 2011, 98(6): 061104

[20] J. Seidel, L. W. Martin, Q. He et al.. Conduction at domain walls in oxide multiferroics[J]. Nature Mater., 2009, 8(3): 229~234

[21] S. Y. Yang, J. Seidel, S. J. Byrnes et al.. Above-bandgap voltages from ferroelectric photovoltaic devices[J]. Nature Nanotechnol., 2010, 5(2): 143~147

[22] X. Deng, H. Ren, H. Lao et al.. Research on Cherenkov second-harmonic generation in periodically poled lithium niobate by femtosecond pulses[J]. J. Opt. Soc. Am. B, 2010, 27(7): 1475~1480

[23] A. Zembrod, H. Puell, J. A. Giordmaine. Surface radiation from non-linear optical polarisation[J]. IEEE J. Quantum Electron., 2003, 4(5): 396

[24] D. A. Kleinman. Theory of second harmonic generation of light[J]. Phys. Rev., 1962, 128(4): 1761~1775

[25] D. A. Scrymgeour, V. Gopalan. Nanoscale piezoelectric response across a single antiparallel ferroelectric domain wall[J]. Phys. Rev. B, 2005, 72(2): 024103

[26] S. E. Skipetrov. Nonlinear optics-disorder is the new order [J]. Nature, 2004, 432(7015): 285~286

[27] X. Deng, H. Ren, H. Lao et al.. Noncollinear efficient continuous optical frequency doubling in periodically poled lithium niobate [J]. Appl. Phys. B: Lasers and Optics, 2010, 100(4): 755~758

[28] X. Deng, H. Ren, X. Chen. Phase-matched second harmonic generation by enhanced nonlinearities in ferroelectric domain walls[C]. CLEO:2011 - Laser Applications to Photonic Applications, OSA Technical Digest (CD), 2011, JThB58

陈险峰, 邓学伟, 任怀瑾, 安宁. 铁电晶体畴壁增强非线性性质的研究[J]. 光学学报, 2011, 31(9): 0900122. Chen Xianfeng, Deng Xuewei, Ren Huaijin, An Ning. Study on Enhanced Nonlinearity in Ferroelectric Domain Wall[J]. Acta Optica Sinica, 2011, 31(9): 0900122.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!