光学学报, 2011, 31 (9): 0900122, 网络出版: 2011-08-29  

铁电晶体畴壁增强非线性性质的研究

Study on Enhanced Nonlinearity in Ferroelectric Domain Wall
作者单位
1 上海交通大学物理系, 上海 200240
2 中国工程物理研究院激光聚变研究中心, 四川 绵阳 621900
摘要
通过研究畴壁切伦科夫倍频,发现畴壁存在巨大增强的非线性系数。由此造成的畴壁“定域性”使其可以对非线性极化波产生相速度调制,进而影响切伦科夫倍频。提出并证实了极限切伦科夫倍频的存在,并分析了它和准相位匹配倍频产生的区别。
Abstract
By studying Cherenkov second harmonic generation, it is found that there exists significantly enhanced nonlinearity in ferroelectric domain wall. This enhanced nonlinearity leads to locality of domain wall, which will modulate the phase velocity of the nonlinear polarization and further influence the Cherenkov angle. Extreme Cherenkov second harmonic generation is proposed and demonstrated, which is distinguished from quasi-phase-matched second harmonic generation.
参考文献

[1] F. Zernike, J. E. Midwinter. Applied Nonlinear Optics [M]. New York: Wiley, 1973

[2] M. M. Fejer, G. A. Magel, D. H. Jundt et al.. Quasi-phase-matched second harmonic generation: tuning and tolerances[J]. IEEE J. Quantum Electron., 1992, 28(11): 2631~2654

[3] S. Zhu, Y. Y. Zhu, N. B. Ming. Quasi-phase-matched third-harmonic generation in a quasi-periodic optical superlattice[J]. Science, 1977, 278(5539): 843~846

[4] Y. Kong, X. F. Chen, Y. X. Xia. Frequency conversion of femtosecond laser pulses in an engineered aperiodic poled optical superlattice[J]. Appl. Opt., 2007, 46(23): 5698~5702

[5] Y. Q. Qin, C. Zhang, Y. Y. Zhu et al.. Wave-front engineering by Huygens-Fresnel principle for nonlinear optical interactions in domain engineered structures[J]. Phys. Rev. Lett., 2008, 100(6): 063902

[6] R. Huang, X. Chen, J. Shi et al.. Pulse shaping by the electro-optic effect in chirped periodically poled lithium niobate[J]. Appl. Opt., 2007, 46(5): 795~799

[7] X. F. Chen, X. L. Zeng, Y. P. Chen et al.. Optimal design of broadened flat bandpass electro-optic phase modulator based on aperiodic domain-inverted grating[J]. J. Opt. A: Pure Appl. Opt., 2003, 5(3): 159~162

[8] X. F. Chen, J. H. Shi, Y. P. Chen et al.. Electro-optic Solc-type periodically poled wavelength filter in lithium niobate[J]. Opt. Lett., 2003, 28(21): 2115~2117

[9] T . J. Yang, V. Gopalan, P. J. Swart et al.. Direct observation of pinning and bowing of a single ferroelectric domain wall[J]. Phys. Rev. Lett., 1999, 82(20): 4106~4109

[10] T. Braun, W. Kleemann, J. Dec et al.. Creep and relaxation dynamics of domain walls in periodically poled KTiOPO4[J]. Phys. Rev. Lett., 2005, 94(11): 117601

[11] A. Fragemann, V. Pasiskevicius, F. Laurell. Second-order nonlinearities in the domain walls of periodically poled KTiOPO4[J]. Appl. Phys. Lett., 2004, 85(3): 375~377

[12] R. Fischer, S. M. Saltiel, D. N. Neshev et al.. Broadband femtosecond frequency doubling in random media[J]. Appl. Phys. Lett., 2006, 89(19): 191105

[13] S. J. Holmgren, C. Canalias, V. Pasiskevicius. Ultrashort single-shot pulse characterization with high spatial resolution using localized nonlinearities in ferroelectric domain walls[J]. Opt. Lett., 2007, 32(11): 1545~1547

[14] S. M. Saltiel, D. N. Neshev, R. Fischer et al.. Generation of second-harmonic conical waves via nonlinear Bragg diffraction[J]. Phys. Rev. Lett., 2008, 100(10): 103902

[15] S. M. Saltiel, D. N. Neshev, W. Krolikowski et al.. Multiorder nonlinear diffraction in frequency doubling processes[J]. Opt. Lett., 2009, 34(6): 848~850

[16] S. M. Saltiel, Y. Sheng, N. Voloch-Bloch et al.. Cerenkov-type second-harmonic generation in two-dimensional nonlinear photonic structures[J]. IEEE J. Quantum Electron., 2009, 45(11): 1465~1472

[17] Y. Sheng, S. M. Saltiel, W. Krolikowski et al.. Cherenkov-type second-harmonic generation with fundamental beams of different polarizations[J]. Opt. Lett., 2010, 35(9): 1317~1319

[18] Y. Zhang, F. M. Wang, K. Geren et al.. Second-harmonic imaging from a modulated domain structure[J]. Opt. Lett., 2010, 35(2): 178~180

[19] A. S. Aleksandrovsky, A. M. Vyunishev, A. I. Zaitsev et al.. Ultrashort pulses characterization by nonlinear diffraction from virtual beam[J]. Appl. Phys. Lett., 2011, 98(6): 061104

[20] J. Seidel, L. W. Martin, Q. He et al.. Conduction at domain walls in oxide multiferroics[J]. Nature Mater., 2009, 8(3): 229~234

[21] S. Y. Yang, J. Seidel, S. J. Byrnes et al.. Above-bandgap voltages from ferroelectric photovoltaic devices[J]. Nature Nanotechnol., 2010, 5(2): 143~147

[22] X. Deng, H. Ren, H. Lao et al.. Research on Cherenkov second-harmonic generation in periodically poled lithium niobate by femtosecond pulses[J]. J. Opt. Soc. Am. B, 2010, 27(7): 1475~1480

[23] A. Zembrod, H. Puell, J. A. Giordmaine. Surface radiation from non-linear optical polarisation[J]. IEEE J. Quantum Electron., 2003, 4(5): 396

[24] D. A. Kleinman. Theory of second harmonic generation of light[J]. Phys. Rev., 1962, 128(4): 1761~1775

[25] D. A. Scrymgeour, V. Gopalan. Nanoscale piezoelectric response across a single antiparallel ferroelectric domain wall[J]. Phys. Rev. B, 2005, 72(2): 024103

[26] S. E. Skipetrov. Nonlinear optics-disorder is the new order [J]. Nature, 2004, 432(7015): 285~286

[27] X. Deng, H. Ren, H. Lao et al.. Noncollinear efficient continuous optical frequency doubling in periodically poled lithium niobate [J]. Appl. Phys. B: Lasers and Optics, 2010, 100(4): 755~758

[28] X. Deng, H. Ren, X. Chen. Phase-matched second harmonic generation by enhanced nonlinearities in ferroelectric domain walls[C]. CLEO:2011 - Laser Applications to Photonic Applications, OSA Technical Digest (CD), 2011, JThB58

陈险峰, 邓学伟, 任怀瑾, 安宁. 铁电晶体畴壁增强非线性性质的研究[J]. 光学学报, 2011, 31(9): 0900122. Chen Xianfeng, Deng Xuewei, Ren Huaijin, An Ning. Study on Enhanced Nonlinearity in Ferroelectric Domain Wall[J]. Acta Optica Sinica, 2011, 31(9): 0900122.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!