半导体光电, 2018, 39 (5): 722, 网络出版: 2019-01-10   

基于CCD标定的微像素精度图像定位技术

MicroPixel Accuracy Point Target Positioning Technology Based on CCD Calibration
作者单位
1 中国科学院光电研究院, 北京 100094
2 中国科学院大学, 北京 100049
摘要
基于光电成像器件CCD的点目标定位技术被广泛运用于天文定位、侦察等民用及军用方面。传统点目标定位精度一般为亚像素级, 受CCD自身成像误差限制, 目标定位精度难以大幅提高。提出通过干涉条纹对CCD进行标定, 从而得到CCD频域像素响应函数的精确表达式, 由此重构高质量的目标入射光场图像, 进而提高光电成像系统对点目标定位的精度。首先建立了干涉条纹标定CCD及目标光场图像重构的理想模型, 并通过仿真验证了点目标图像重构效果以及最终点目标的定位精度。仿真结果表明, 经干涉条纹标定CCD后, 重构的目标光场图像质量得到大幅度的提升, 接近于CCD像面前入射光场图像, 通过高斯曲面拟合得到点目标形心坐标及其微位移的提取精度均达微像素级别, 相比于传统的亚像素定位, 定位精度得到了大幅度的提高。
Abstract
Pointtarget positioning technology based on CCD is widely used in civil and military fields such as astronomical positioning, reconnaissance, etc. The accuracy of traditional point target positioning is generally subpixel level, and it is difficult to be significantly improved because of the selfimaging errors of CCD. In this paper, a method was proposed to accurately calibrate the CCD error through interference fringes and reconstruct the highquality target image, so as to achieve the micropixel level accuracy. Firstly, an ideal model based on CCD calibration with interference fringes and target image reconstruction was established, then the accuracy of different displacements of point target at long distance was verified with numerical simulation. The results show that the quality of the reconstructed target images is greatly improved after the CCD is calibrated by interference fringes, which is close to the incident light field image before the CCD plane. The accuracy of the point target centroid and small displacement extraction both reaches 10-6 pixels, which has been greatly improved compared to that of the traditional subpixel positioning.
参考文献

[1] 杨 君, 张 涛, 宋靖雁, 等. 星点质心亚像元定位的高精度误差补偿法[J]. 光学精密工程, 2010, 18(4): 10021010.

    Yang Jun, Zhang Tao, Song Jingyan, et al. High accuracy error compensation algorithm for star image subpixel subdivision location[J]. Opt. Precision Eng., 2010, 18(4): 10021010.

[2] 刘南南, 徐抒岩, 曹小涛, 等. Kalman滤波算法在高精度星点定位中的应用[J]. 光学学报, 2013, 33(11): 133138.

    Liu Nannan, Xu Shuyan, Cao Xiaotao, et al. Application of adaptive Kalman filter algorithm in high accuracy star spot location[J]. Act. Opt. Sin., 2013, 33(11): 133138.

[3] 魏新国, 徐 佳, 张广军. 星敏感器形心定位的S曲线误差补偿[J]. 光学精密工程, 2013, 21(4): 849857.

    Wei Xinguo, Xu Jia, Zhang Guangjun. Scurve error compensation of centroiding location for star sensors[J]. Opt. Precision Eng., 2013, 21(4): 849857.

[4] 姜 亮, 张立国, 张星祥, 等. 星敏感器星点定位系统误差补偿[J]. 中国激光, 2015, 42(3): 0314001.

    Jiang Liang, Zhang Liguo, Zhang Xingxiang, et al. Compensation for star centroid systematic error of star trackers[J]. Chinese J. Lasers, 2015, 42(3): 0314001.

[5] Rufino G, Accardoa D. Enhancement of the centroiding algorithm for star tracker measure refinement[J]. Act. Astronautica, 2003, 53(2): 135147.

[6] Shaklan S, Sharman M, Pravdo S. Highprecision measurement of pixel positions in a chargecoupled device[J]. Appl. Opt., 1995, 34(29): 66726681.

[7] Zhai C, Shao M, Goullioud R, et al. Micropixel accuracy centroid displacement estimation and detector calibration[J]. Proc. R. Soc. A, 2011, 467: 35503569.

[8] Nemati B, Shao M, Zhai C, et al. Micropixel image position sensing testbed[J]. Proc. of SPIE, 2011: 8151.

[9] Crouzier A, Mallbet F, Preis O, et al. Metrology calibration and very high accuracy centroiding with the NEAT testbed[J]. Phys., 2014, 9143: 91434S.

[10] Xiong S J, Xiang Li B, He Y, et al. Image reconstruction method based on CCD calibration in frequency domain[J]. Appl. Opt., 2015, 54(14): 45614565.

[11] 相里斌, 张 泽, 熊胜军, 等. 一种基于CCD阵列像素响应函数频域标定的无像差图像重构方法: 中国, 2014106369804[P]. 2014.

    Xiang Libin, Zhang Ze, Xiong Shengjun, et al. An aberrationfree image reconstruction method based on CCD array pixel response function frequency domain calibration: CHN, 2014106369804[P]. 2014.

[12] 王海涌, 费峥红, 王新龙. 基于高斯分布的星像点精确模拟及质心计算[J]. 光学精密工程, 2009, 17(7): 16721677.

    Wang Haiyong, Fei Zhenghong, Wang Xinlong. Precise simulation of star spots and centroid calculation based on Gaussian distribution[J]. Opt. Precision Eng., 2009, 17(7): 16721677.

[13] 王 敏, 赵金宇, 陈 涛. 基于各向异性高斯曲面拟合的星点质心提取算法[J]. 光学学报, 2017, 37(5): 218227.

    Wang Min, Zhao Jinyu, Chen Tao. Center extraction method for starmap targets based on anisotropic Gaussian surface fitting[J]. Act. Opt. Sin., 2017, 37(5): 218227.

[14] Wu Z, Zhang W X, Xiang Li B, et al. Fullfield heterodyne dynamic interferometry based on hertzlevel low differentialfrequency acoustooptic frequency shifter[J]. Proc. of SPIE, 2017: 1032905.

李登, 张泽, 肖思, 梁欣丽. 基于CCD标定的微像素精度图像定位技术[J]. 半导体光电, 2018, 39(5): 722. LI Deng, ZHANG Ze, XIAO Si, LIANG Xinli. MicroPixel Accuracy Point Target Positioning Technology Based on CCD Calibration[J]. Semiconductor Optoelectronics, 2018, 39(5): 722.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!