光学学报, 2019, 39 (1): 0126003, 网络出版: 2019-05-10   

光纤结构光场产生及应用 下载: 1036次特邀综述

Generation and Application of Fiber-Based Structured Light Field
张文定 1,2,*李鑫 1,2白家浩 1,2张录 1,2梅霆 1,2赵建林 1
作者单位
1 西北工业大学理学院陕西省光信息技术重点实验室, 陕西 西安 710072
2 西北工业大学理学院超常条件材料物理与化学教育部重点实验室, 陕西 西安 710072
图 & 表

图 1. 少模光纤[24]。 (a)标量模式横向模场强度及有效折射率; (b)矢量模式横向模场强度、偏振和有效折射率

Fig. 1. Few-mode fiber[24]. (a) Transverse mode field intensity and effective refractive index in scalar mode; (b) transverse mode field intensity, polarization and effective refractive index in vector mode

下载图片 查看原文

图 2. 三组严格简并高阶矢量模式叠加实现涡旋光场产生的数值模拟结果[24]。(a) HE21even/odd; (b) HE31even/odd; (c) EH11even/odd

Fig. 2. Numerical simulation results of vortex light field generation by superposition of three strict degenerate high-order vector modes[24]. (a) HE21even/odd; (b) HE31even/odd; (c) EH11even/odd

下载图片 查看原文

图 3. 自由空间矢量光场耦合实现光纤柱矢量光场产生[25]。(a)实验装置; (b)横向模场强度和偏振分布

Fig. 3. Fiber-based cylindrical vector light field generated by free space vector light field coupling. (a) Experimental setup; (b) transverse mode field intensity and polarization distributions

下载图片 查看原文

图 4. (a)空芯环形光纤横截面的光学图像及材料折射率分布; (b)空芯环形光纤支持传输的相邻高阶矢量模式间的有效折射率差; (c)自由空间涡旋光场耦合实现光纤涡旋光场产生实验装置; (d)光纤高阶涡旋光场的螺旋相位分布检测结果[27]

Fig. 4. (a) Optical image of cross section and refractive index distribution of materials for air-core optical fiber; (b) effective refractive index difference between adjacent high-order vector modes of air-core optical fiber; (c) experimental setup for fiber-based vortex light field generation by free-space vortex light field coupling; (d) detection results of spiral phase distribution of fiber-based high-order vortex light field[27]

下载图片 查看原文

图 5. (a)机械微弯长周期光纤光栅实现光纤柱矢量/涡旋光场产生实验装置; (b)机械微弯长周期光纤光栅透射光谱;(c)光纤柱矢量光场产生及偏振分布检测结果; (d)光纤涡旋光场产生及螺旋相位分布检测结果[29]

Fig. 5. (a) Experimental setup for cylindrical vector beams and first-order vortex beams via a micro-bend long period fiber grating; (b) transmission spectra of micro-bend long period fiber grating; (c) fiber-based cylindrical vector light field generation and detection results of polarization distribution; (d) fiber-based vortex light field generation and detection results of spiral phase distribution[29]

下载图片 查看原文

图 6. (a)机械微弯长周期光纤光栅实现一阶涡旋光场产生原理; (b)(c) ±1阶涡旋光场模场强度分布; (d)(e) ±1阶涡旋光场与高斯光同轴干涉产生的螺旋状干涉条纹[31]

Fig. 6. (a) Principle of first-order vortex light field generation by micro-bend long period fiber grating; (b)(c) mode field intensity distributions of ±1-order vortex light fields; (d)(e) spiral interference fringes generated by coaxial interference between ±1-order vortex light fields and Gaussian light[31]

下载图片 查看原文

图 7. (a)模式F11在光纤中的传输示意图; (b)模式F11的横向模场强度分布; (c)模式HE11的横向模场强度分布; (d)光纤横截面上模式HE11与F11偏振方向之间的夹角?; (e)~(h)模式HE11与第1组高阶矢量模式(TE01,HE21even/odd,TM01)的耦合系数κ随?的变化[32]

Fig. 7. (a) Schematic of transmission of mode F11 in fiber; (b) transverse mode field intensity distribution of mode F11; (c) transverse mode field intensity distribution of mode HE11; (d) included angle ? between polarization directions of modes HE11 and F11 on cross section of optical fiber; (e)-(h) coupling coefficient κ between mode HE11 and first group high-order vector modes (TE01, HE21even/odd, TM01) versus ?[32]

下载图片 查看原文

图 8. 632.8, 532, 1550 nm波长情况下,(a1)~(a5)、(c1)~(c5)、(e1)~(e5)光纤径向/(b1)~(b5)、(d1)~(d5)、(f1)~(f5)角向偏振矢量光场产生及偏振态检测结果[33]

Fig. 8. Polarization vector light field generation and detection results of polarization of (a1)-(a5), (c1)-(c5), (e1)-(e5) radial/(b1)-(b5), (d1)-(d5), (f1)-(f5) azimuthal fiber-based vector fields at wavelengths of 632.8, 532, 1550 nm[33]

下载图片 查看原文

图 9. 1540,1545,1550,1555,1560 nm波长情况下,(a1)~(e1),(a3)~(e3)光纤±1阶涡旋光场的模场强度分布和(a2)~(e2),(a4)~(e4)产生的±1阶涡旋光场与高斯光同轴干涉产生的螺旋状干涉条纹[32]

Fig. 9. (a1)-(e1), (a3)-(e3) Mode field intensity distributions of fiber-based ±1-order vortex light fields and (a2)-(e2), (a4)-(e4) spiral interference fringes generated by coaxial interference between ±1-order vortex light fields and Gaussian light at wavelengths of 1540,1545,1550,1555,1560 nm[32]

下载图片 查看原文

图 10. AIFG级联矢量模式耦合在光纤中产生的高阶涡旋光场的模场[24]。(a)(b)原理图; (c)(d)模场强度分布及螺旋干涉条纹

Fig. 10. Fiber-based high-order vortex light field generation by cascaded vector mode coupling of AIFG[24]. (a)(b) Schematic diagrams; (c)(d) mode field intensity distributions and spiral interference fringes

下载图片 查看原文

图 11. (a)飞秒脉冲自相关曲线; (b)飞秒脉冲光谱及AIFG的透射光谱; (c) AIFG实现矢量基模与第1组高阶矢量模式耦合的相位匹配关系; (d)(e)飞秒涡旋光场的强度及线偏振特性数值计算结果; (f)(g)飞秒涡旋光场的螺旋相位分布计算结果[34]

Fig. 11. (a) Autocorrelation curve of femtosecond pulse; (b) spectrum of femtosecond pulse and transmission spectrum of AIFG; (c) phase matching relationship between fundamental vector mode and first group high-order vector mode coupling achieved by AIFG; (d)(e) numerical calculation results of intensity and linear polarization characteristics of femtosecond vortex light field; (f)(g) calculation results of spiral phase distribution of femtosecond vortex light field[34]

下载图片 查看原文

图 12. (a)(b) ±1阶飞秒涡旋光场的横向模场强度分布; (c)(d)通过图12(a)、(b)中心的水平强度曲线; (e)(f)飞秒涡旋光场与高斯光离轴干涉产生的叉形干涉条纹; (g) 1阶飞秒涡旋光场线偏振特性检测结果[34]

Fig. 12. (a)(b) Transverse mode field intensity distributions of ±1-order femtosecond vortex light fields; (c)(d) horizontal intensity curves through centers of Fig. 12 (a) and Fig. 12 (b); (e)(f) fork-shaped interference fringes generated by off-axis interference between femtosecond vortex light field and Gaussian light; (g) detection results of linear polarization characteristics of 1-order femtosecond vortex light field[34]

下载图片 查看原文

图 13. (a)光纤端面加工的螺旋相位板扫描电子显微镜(SEM)图; (b)螺旋相位板局部放大图; (c)光纤端面加工的叉形光栅SEM图; (d)叉形光栅局部放大图; (e)(f)螺旋相位板和叉形光栅产生的涡旋光场的强度分布; (g)(h)螺旋相位板和叉形光栅产生的涡旋光场与高斯光离轴干涉产生的叉形干涉条纹[36]

Fig. 13. (a) Scanning electron microscope (SEM) image of spiral phase plate patterned on a fiber core; (b) local amplification image of spiral phase plate; (c) SEM image of fork-shaped grating patterned on a fiber core; (d) local amplification image of fork-shaped grating; (e)(f) intensity distributions of vortex light field generated by spiral phase plate and fork-shaped grating; (g)(h) fork-shaped interference fringes generated by off-axis interference between Gaussian light and vortex light field gene

下载图片 查看原文

图 14. (a)手征光纤光栅构建及涡旋光场产生实验装置; (b)涡旋光场模场强度分布; (c)(d) ±1阶涡旋光场与线偏振高斯光同轴干涉产生的螺旋状干涉条纹[39]

Fig. 14. (a) Experimental setup for chiral fiber grating construction and vortex light field generation; (b) mode field intensity distribution of vortex light field; (c)(d) spiral interference fringes generated by coaxial interference between ±1-order vortex light field and linearly polarized Gaussian light[39]

下载图片 查看原文

图 15. (a)利用两束偏振方向正交的声弯曲波叠加实现手征光纤光栅产生实验装置; (b)~(e)光纤中涡旋声场的横向模场强度及相位分布; (f)~(i)光纤涡旋光场的模场强度分布及螺旋相位检测结果[44]

Fig. 15. (a) Experimental setup for chiral fiber grating generation by superposition of two perpendicularly polarized acoustic flexural waves; (b)-(e) transverse mode field intensity and phase distributions of fiber-based vortex acoustic field; (f)-(i) detection results of mode field intensity distribution and spiral phase of fiber-based vortex light field

下载图片 查看原文

图 16. (a)光纤径向/角向偏振矢量光场产生及偏振态检测结果; (b)倾斜长周期光纤光栅结构示意图; (c)光纤涡旋光场产生及螺旋相位分布检测结果[45-46]

Fig. 16. (a) Detection results of fiber-based radial/angular polarization vector light field generation and polarization state; (b) structural diagram of tilted long-period fiber grating; (c) detection results of fiber-based vortex light field generation and spiral phase distribution[45-46]

下载图片 查看原文

图 17. (a)光纤耦合器实现柱矢量光场产生实验装置; (b)(c)光纤径向/角向偏振矢量光场的横向模场强度分布及偏振态检测结果[48]

Fig. 17. (a) Experimental setup for cylindrical vector light field generation by fiber coupler; (b)(c) detection results of transverse mode field intensity distribution and polarization state of fiber-based radial/angular polarization vector light field[48]

下载图片 查看原文

图 18. (a)光纤STED荧光显微成像系统; (b)激发和损耗光束在聚焦区域的重叠实现焦斑3D绘图; (c)(d)激发光焦点的图像及横截面上的强度分布; (e)(f)损耗光束的环形焦点的图像及横截面上的强度分布; (g)纳米荧光微球STED成像[54]

Fig. 18. (a) Fiber-based STED fluorescence microscopic imaging system; (b) 3D plots of the focal spot achieved by the overlapping of the excitation and depletion beams in the focal region; (c)(d) image and cross-section of the focal spot of the excitation beam; (e)(f) image and cross-section of a doughnut shaped focal spot of the depletion beam; (g) STED imaging of nanofluorescence microspheres[54]

下载图片 查看原文

图 19. (a) OAM作为数据复用的一个新自由度; (b)涡旋光纤光学显微图像; (c)光纤OAM通信实验配置; (d)涡旋光纤承载两种涡旋模式的10波长、20×4 Gbit/s及16-QAM信号传输框图[55]

Fig. 19. (a) OAM as new degree of freedom for data multiplexing; (b) optical microscopic image of vortex fiber; (c) experimental configuration of fiber OAM communication; (d) block diagram of 20×4 Gbit/s 16-QAM signal transmission over 10 wavelengths carrying two vortex modes in vortex fiber

下载图片 查看原文

图 20. (a)径向偏振矢量光场内激发镀金属膜光纤针尖结构示意图; (b)光学径向偏振矢量模式与SPP径向偏振矢量模式的有效折射率随针尖直径的变化; (c)镀金属膜光纤针尖SEM图; (d)针尖局部放大图; (e)光纤径向偏振矢量模式内激发镀金属膜光纤针尖实现针尖尖端纳米聚焦光源产生; (f)针尖纳米聚焦光源激发环状金属纳米结构示意图; (g)环状金属纳米结构SEM图; (h)金属环表面SPP模式的横向模场强度分布; (i)~(l) SPP模式偏振态分布检测结果[66]

Fig. 20. (a) Structural diagram of metal-coated optical fiber tip excited by radially polarized vector light field; (b) relationship between effective refractive index of optical radial polarization vector mode and SPP radial polarization vector mode with tip diameter; (c) SEM image of metal-coated optical fiber tip; (d) local enlargement of tip; (e) generation of nanofocusing light source at tip of metal-coated optical fiber by excitation in radial polarization vector mode of optical fiber; (f) schemati

下载图片 查看原文

图 21. (a)光纤径向偏振矢量光场产生及SRS测量装置; (b)不同抽运功率下的SRS光谱; (c)抽运光、(d)一阶斯托克斯谱线及(e)二阶斯托克斯谱线的光谱及横向模场强度分布的偏振态检测结果[67]

Fig. 21. (a) Fiber-based radially polarized vector field generation and SRS measurement setup; (b) SRS spectra at different pumping powers; spectra and polarization state detection results of transverse mode field intensity distributions of (c) pumping light, (d) first-order and (e) second-order Stokes lines[67]

下载图片 查看原文

表 1光纤矢量模式的场方向函数

Table1. Field direction functions of fiber-based vector modes

Vector modeΦ(φ)
HEl+1,meven,ℓ≥0x^cos(ℓφ)-y^sin(ℓφ)
HEl+1,modd,ℓ≥0x^sin(ℓφ)+y^cos(ℓφ)
EHl-1,meven,ℓ≥2x^cos(ℓφ)+y^sin(ℓφ)
EHl-1,modd,ℓ≥2x^sin(ℓφ)-y^cos(ℓφ)
TE01,=1x^sinφ-y^cosφ
TM01,=1x^cosφ+y^sinφ

查看原文

张文定, 李鑫, 白家浩, 张录, 梅霆, 赵建林. 光纤结构光场产生及应用[J]. 光学学报, 2019, 39(1): 0126003. Wending Zhang, Xin Li, Jiahao Bai, Lu Zhang, Ting Mei, Jianlin Zhao. Generation and Application of Fiber-Based Structured Light Field[J]. Acta Optica Sinica, 2019, 39(1): 0126003.

本文已被 3 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!