量子电子学报, 2019, 36 (1): 6, 网络出版: 2019-04-03  

基于多波长光源计算鬼成像的光学加密

Optical encryption scheme based on computational ghost imaging with multiple wavelength light source
作者单位
南京邮电大学信号处理与传输研究院, 江苏 南京 210003
摘要
提出了一种新的基于多波长光源计算鬼成像的光学加密方案。方案使用红绿蓝三色光产生多个随机散斑,将散斑序列的相位掩膜矩阵调制成随机Toeplitz矩阵,散斑的对应波长是随机三色光波长,相位掩膜和波长同时作为光学加密的两个密钥。所有散斑经过相同的轴向距离到达物体后,最终利用压缩感知技术恢复物体图像。数值仿真表明,方案在双密钥全部已知条件下能完全恢复物体图像,密钥窃取率低于60%不能获得物体图像信息。获得同等质量的图像,方案所需的测量次数和传输密钥量仅是基于计算鬼成像的双密钥光学加密方案的1/3。
Abstract
A new optical encryption(OE) scheme based on multiple wavelength light source for computational ghost imaging(CGI) is proposed. In the scheme, using red-green-blue three color light to generate multiple random speckles, the phase mask matrix of speckles sequence is modulated into a random Toeplitz matrix. The corresponding wavelengths of speckles are random three color light wavelengths. The phase mask and wavelength are simultaneously used as two keys for optical encryption. After all speckles arrive at an object at the same axial distance, the compressed sensing technology is used to restore the object image. Numerical simulation shows that the scheme can completely restore the object image under all known conditions of the dual key, and the key stealing rate is less than 60%, which can not get the image information of the object. To get the same quality image, the number of measurement and transmission key is only 1/3 based on the double key optical encryption scheme of ghost imaging.
参考文献

[1] Pittman T B, Strekalov D V, et al. Optical imaging by means of two-photon quantum entanglement[J]. Physical Review A, 1995, 52(5): 3429-3434.

[2] Abouraddy A F, Saleh B E A, Sergienko A V, et al. Role of entanglement in two-photon imaging[J]. Physical Review Letters, 2001, 87(12): 123602.

[3] Shapiro J H, Boyd R W. The physics of ghost imaging[J]. Quantum Information Processing, 2012, 87(4): 949-993.

[4] Bennink R S, Bentley S J, Boyd R W. “Two-photon” coincidence imaging with a classical source[J]. Physical Review Letters, 2002, 89: 113601.

[5] Chen Mingliang, Li Enrong, Han Shensheng, et al. Ghost imaging based on sparse array pseudothermal light system[J]. Acta Optica Sinica (光学学报), 2012, 32(5): 0503001 (in Chinese).

[6] Liu Xuefeng, Yao Xuri, Wu Lingan, et al. The role of intensity fluctuations in thermal ghost imaging[J]. Acta Physica Sinica (物理学报), 2013, 62(18): 184205 (in Chinese).

[7] Wang Sen, Li Hongguo, Wang Kaige, et al. The influence of rotational speed of ground-glass on the quality of ghost imaging with thermal light[J]. Acta Optica Quantum Sinica (量子光学学报), 2015, 21(05): 010009 (in Chinese).

[8] Tang Wenzhe, Cao Zhengwen, Zeng Guihua, et al. Back-side correlation imaging with digital micro mirror[J]. Acta Optica Sinica (光学学报), 2015, 35(5): 0511004 (in Chinese).

[9] Erkmen B I, Shapiro J H. Unified theory of ghost imaging with Gaussian-state light[J]. Physical Review A, 2008, 77: 043809.

[10] Bromberg Y, Katz O, Silberberg Y. Ghost imaging with a single detector[J]. Physical Review A, 2009, 79: 053840.

[11] Ferri F, Magatti D, Lugiato L A, Gatti A. Differential ghost imaging[J]. Physical Review Letters, 2010, 104: 253603.

[12] Sun B, Welsh S S, Edgar M P, et al. Normalized ghost imaging[J]. Optics Express, 2012, 20: 16892-16901.

[13] Luo K H, Huang B Q, Zheng W M, et al. Nonlocal imaging by conditional averaging of random reference measurements[J]. Chinese Physics Letters, 2012, 29: 074216.

[14] Li M F, Zhang Y R, Liu X F, et al. A double-threshold technique for fast time-correspondence imaging[J]. Applied Physics Letters, 2013, 103: 211119.

[15] Bai Xu, Li YongQiang, Zhao ShengMei. Differential compressive correlated imaging[J]. Acta Physica Sinica (物理学报), 2013, 62: 044209 (in Chinese).

[16] Zhao S M, Zhuang P. Correspondence normalized ghost imaging on compressive sensing[J]. Chinese Physics B, 2014, 23: 054203.

[17] Zhang D J, Li H G, Zhao Q L, et al. Wavelength-multiplexing ghost imaging[J]. Physical Review A, 2015, 92(1): 013823.

[18] Clemente P, Durán V, Tajahuerce E, et al. Optical encryption based on computational ghost imaging[J]. Optics Letters, 2010, 35(14): 2391-2393.

[19] Mehrdad T, Reza K, Sohrab A K. Gray-scale and color optical encryption based on computational ghost imaging[J]. Applied Physics Letters, 2012, 101: 101108.

[20] Zafari, Mohammad, Kheradmand, et al. Optical encryption with selective computational ghost imaging[J]. Journal of Optics, 2014, 16: 105405.

[21] Zhao S M, Wang L et al. High performance optical encryption based on computational ghost imaging with QR code and compressive sensing technique[J]. Optics Communications, 2015, 353: 90-95.

[22] Wu J J, Xie Z W, Liu Z J. Multiple-image encryption based on computational ghost imaging[J]. Optics Communications, 2016, 359: 38-43.

[23] Wang L, Zhao S M, Cheng W W, et al. Optical image hiding based on computational ghost imaging[J]. Optics Communications, 2016, 366: 314.

[24] Gatti A, Brambilla E, Bache M, et al. Ghost imaging with thermal light: comparing entanglement and classical correlation[J]. Physical Review Letters, 2004, 93: 093602.

曹非, 赵生妹. 基于多波长光源计算鬼成像的光学加密[J]. 量子电子学报, 2019, 36(1): 6. CAO Fei, ZHAO Shengmei. Optical encryption scheme based on computational ghost imaging with multiple wavelength light source[J]. Chinese Journal of Quantum Electronics, 2019, 36(1): 6.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!