激光与光电子学进展, 2011, 48 (4): 041901, 网络出版: 2011-02-17   

微结构硫化物光纤中中红外超连续谱的产生

Mid-Infrared Supercontinuum Generation from Microstructured Chalcogenide Fibers
作者单位
湖南大学信息科学与工程学院, 湖南 长沙 410082
摘要
采用微结构硫化物光纤,以非线性薛定谔方程(NLSE)为理论模型,利用分步傅里叶计算方法,研究了输入脉冲的中心频率和脉宽对中红外超连续谱(SC)的影响。采用的微结构硫化物光纤具有较高的非线性效应和两个零色散波长(ZDW),且第二个零色散波在中红外波段,有利于中红外超连续谱的产生。通过仿真发现,输入脉冲的中心频率和脉宽对连续谱的产生都有很大影响。数值仿真中,输入具有不同频率和脉宽的脉冲,输入波长接近零色散点时较远离色散点时产生的中红外超连续谱要宽。而且,在保持峰值功率不变的情况下,脉宽对频谱展宽程度没有影响,但是较短脉冲产生的中红外超连续谱更为平坦。
Abstract
By using microstructured chalcogenide fibers, split-step Fourier algorithm and nonlinear Schrdinger equation (NLSE), effects of centre frequency and pulse width of seed pulse on mid-infrared supercontinuum (SC) generation are studied. The microstructured chalcogenide fibers used here have high nonlinear effect and two zero dispersion wavelengths (ZDW). The second ZDW is in mid-infrared, which is helpful to mid-infrared SC generation. There are marked effects of centre frequency and pulse width of seed pulse on SC generation. In numerical stimulation, seed pulses have different frequencies and durations. Mid-infrared SC generation whose input wavelength is near ZDWs is wider than those far from ZDWs. When keeping peak power invariable, frequency spectrum broadened by pulse width is steady, but the shorter pulse can generate smoother mid-infrared SC.
参考文献

[1] . Holzwarth, T. Udem, T. W. Hansch et al.. Optical frequency synthesizer for precision spectroscopy[J]. Phys. Rev. Lett., 2000, 85(11): 2264-2267.

[2] Chenan Xia. Mid-Infrared Supercontinuum Laser System and its Biomedical Applications[D]. Michigan: University of Michigan,2009. 104~108

[3] . N. Islam, G. Sucha, I. Bar-Joseph et al.. Broad bandwidths from frequency-shifting solitons in fibers[J]. Opt. Lett., 1989, 14(7): 370-372.

[4] . Morioka, K. Mori, S. Kawanishi et al.. Multi-WDM-channel, GBit/s pulse generation from a single laser source utilizing LD-pumped supercontinuum in optical fibers[J]. IEEE Photon. Technol. Lett., 1994, 6(3): 365-368.

[5] S. C. Buchter, B. Andersen, M. D. Nielsen et al.. Nanosecond supercontinuum generation at the mJ level [C]. SPIE European Symp. on Optics/Photonics in Security and Defence, 2004, 5620: 22~27

[6] . Knight. Photonic crystal fibres[J]. Nature, 2003, 424(6950): 847-851.

[7] . C. Knight, T. A. Birks, P. St. J. Russell et al.. All-silicasin91e-mode optical fiber with photonic crystal cladding[J]. Opt. Lett., 1996, 21(19): 1547-1549.

[8] . V. Price, Tanya M. Monro, H. Ebenclorff-Heidepriem et al.. Mid-IR supercontinuum generation from nonsilica microstructured optical fibers[J]. IEEE J. Sel. Top. Quantum Electron., 2007, 13(3): 738-749.

[9] T. M. Monro, K. M. Kiang, J. H. Lee et al.. High nonlinearity extruded single-mode holey optical fibers[C]. Opt. Fiber Commun. Conf. Post deadline paper FA1, Anaheim, 2002: 1~3

[10] . . Supercontinuum generation in a photonic crystal fiber with two zero dispersion wavelengths[J]. Opt. Express, 2004, 12(6): 1045-1054.

[11] . Genty, M. Lehtonen, H. Ludvigsen et al.. Enhanced bandwidth of supercontinuum generated in microstructured fibers[J]. Opt. Express, 2004, 12(15): 3471-3480.

[12] . Frosz, Peter Falk, Ole Bang. The role of the secone zero-dispersion wavelength in generation of supercontinua and bright-bright soliton-pairs across the zero-dipersion wavelength[J]. Opt. Express, 2005, 13(16): 6181-6192.

[13] 阿戈沃. 非线性光纤光学原理及应用[M]. 贾东方译. 北京: 电子工业出版社, 2002

    Govind P. Agrawal. Nonlinear Fiber Optics & Applications of Nonlinear Fiber Optics[M]. Jia Dongfang Transl.. Beijing: Publishing House of Electronics Industry, 2002

[14] C. Xiong, E. Magi, F. Luan et al.. Raman response in chalcogenide As2S3 fiber [C]. IEEE, Hongkong, 2009.1~2

[15] . E. Lamont, Barry Luther-Davies, Choi Duk-Yong et al.. Supercontinuum generation in dispersion engineered highly nonlinear (γ=10 /W/m) As2S3 chalcogenide planar waveguide[J]. Opt. Express, 2008, 16(19): 14938-14944.

[16] . . Dispersive wave generation by solitons in microstructured optical fibers[J]. Opt. Express, 2004, 12(1): 124-134.

[17] . . Ultrabroadband supercontinuum generation from ultraviolet to 6.28 μm in a fluoride fiber[J]. Appl. Phys. Lett., 2009, 95(16): 161103.

夏兰叶, 文建国, 赵楚军, 谢栋. 微结构硫化物光纤中中红外超连续谱的产生[J]. 激光与光电子学进展, 2011, 48(4): 041901. Xia Lanye, Wen Jianguo, Zhao Chujun, Xie Dong. Mid-Infrared Supercontinuum Generation from Microstructured Chalcogenide Fibers[J]. Laser & Optoelectronics Progress, 2011, 48(4): 041901.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!