光学 精密工程, 2018, 26 (2): 480, 网络出版: 2018-03-21   

微偏振片阵列红外成像非均匀性产生机理及其校正

Mechanism and calibration of non-uniformity for IR polarization imagery obtained with integrated micro-polarizer array
刘海峥 1,2,3,*史泽林 1,2冯斌 1,2
作者单位
1 中国科学院 沈阳自动化研究所,辽宁 沈阳 110016
2 中国科学院 光电信息处理重点实验室,辽宁 沈阳 110016
3 中国科学院大学,北京100049
摘要
集成微偏振片阵列红外成像系统的偏振度图像对非均匀性高度敏感,不经非均匀校正的偏振度图像存在较大误差。为了校正微偏振片阵列红外成像的非均匀性,以入射光Stokes矢量形式,建立了光电转换基本过程的偏振像素模型,基于入射激励和辐射响应数据,分析了微偏振阵列与红外焦面联合作用下非均匀性产生机理。提出一种基于多次辐射测量的矩阵形式的非均匀性校正方法,该方法通过构造多组测量方程,求解偏振像元的增益矢量,由相邻四像元增益矢量组成超级像元的增益矩阵,结合Stokes矢量提取矩阵,逆向求解重构点的校正矩阵。实验数据表明:该方法比两点法降低非均匀性约5%~20%,有效改善红外偏振度图像质量。
Abstract
For an infrared imaging system integrated with a micro-polarizer array (MPA), DoLP (degree of linear polarization) images are extremely sensitive to non-uniformity. Therefore, large error will occur when the non-uniformity is not calibrated. In order to calibrate the non-uniformity, a polarized-pixel model for optoelectronic conversion process was constructed by taking the incident light as a Stokes vector, and the non-uniformity generation mechanism under the combined effect of a micro-polarizer array (MPA) and an infrared FPA was analyzed based on incident stimulation and radiation response data. A non-uniformity calibration (NUC) method was presented to solve the gain vectors of each polarized pixel by constructing multiple groups of measurement equations. The method constructed a gain matrix of a super pixel by using gain vectors from neighboring polarized pixels and joint Stokes extraction matrix to solve the NUC matrix inversely. The experimental results prove that the calibration method proposed reduces non-uniformity by 5-20%, and improves the quality of DoLP images effectively.
参考文献

[1] 段锦, 付强, 莫春和, 等. 国外偏振成像军事应用的研究进展(上)[J]. 红外技术, 2014, 36(4): 190-195.

    DUAN J, FU Q, MO CH H, et al.. Review of polarization imaging technology for international military application[J]. Infrared Technology, 2014, 36(4): 190-195. (in Chinese)

[2] 姜会林, 付强, 段锦, 等. 红外偏振成像探测技术及应用研究[J]. 红外技术, 2014, 36(5): 345-349.

    JIANG H L, FU Q, DUAN J, et al.. Research on infrared polarization imaging detection technology and application[J]. Infrared Technology, 2014, 36(5): 345-349. (in Chinese)

[3] 聂劲松, 汪震. 红外偏振成像探测技术综述[J]. 红外技术, 2006, 28(2): 63-67.

    NIE J S, WANG ZH. Summarize of infrared polarization imaging detection technology[J]. Infrared Technology, 2006, 28(2):63-67. (in Chinese)

[4] ACCETTA J S, SHUMAKER D L. The Infrared and Electro Optical Systems Handbook[M]. SPIE Optical Engineering Press, 1993.

[5] 蔡毅, 王岭雪. 红外成像技术中的9个问题[J]. 红外技术, 2013, 35(11): 671-682.

    CAI Y, WANG L X. Nine issues associated with infrared imaging technology[J]. Infrared Technology, 2013, 35(11): 671-682.(in Chinese)

[6] 牛继勇, 李凡民, 马莉祥. 目标红外偏振探测原理及特性分析[J]. 红外技术, 2014, 36(3): 215-220.

    NIU J Y, LI F M, MA L X. The Principle and characteristics analysis of IR polarization detection[J]. Infrared Technology, 2014, 36(3):215-220. (in Chinese)

[7] ZHANG Y, HAN J T, LI J CH, et al.. GONG Ting. Characteristics analysis of infrared polarization for several typical artificial objects[J]. Proceedings of SPIE, 2014, 9244: 92440I.

[8] TOOLEY R D. Man-made target detection using infrared polarization[J]. Proceedings of SPIE, 1989, 1166.

[9] 莫春和, 段锦, 付强, 等. 国外偏振成像军事应用的研究进展(下)[J]. 红外技术, 2014, 36(4): 265-270.

    MO CH H, DUAN J, FU Q, et al.. Review of polarization imaging technology for international military application (II)[J]. Infrared Technology, 2014, 36(4): 265-270. (in Chinese)

[10] 孙秋菊, 王鹏, 黄文霞. 红外偏振成像在伪装目标识别中的应用研究[J]. 红外, 2016, 36(1): 18-22.

    SUN Q J, WANG P, HUANG W X. Application of infrared polarization imaging in camouflage detection[J]. Infrared, 2016, 36(1):18-22. (in Chinese)

[11] GOUDAIL F, TYO J S. When is polarimetric imaging preferable to intensity imaging for target detection[J]. Journal of the Optical Society of America A, 2011, 28(1): 46-53.

[12] 范晋祥, 杨建宇. 红外成像探测技术发展趋势分析[J]. 红外与激光工程, 2012, 41(12): 3145-3153.

    FAN J X, YANG J Y. Development trends of infrared imaging detecting technology[J]. Infrared and Laser Engineering, 2012, 41(12):3145-3153. (in Chinese)

[13] 王霞, 夏润秋, 金伟其, 等. 红外偏振成像探测技术进展[J]. 红外与激光工程, 2014, 43(10): 3175-3182.

    WANG X, XIA R Q, JIN W Q, et al.. Technology progress of infrared polarization imaging detection[J]. Infrared and Laser Engineering, 2014, 43(10): 3175-3182. (in Chinese)

[14] TYO J S, GOLDSTEIN D L, CHENAULT D B, et al.. Review of passive imaging polarimetry for remote sensing applications[J]. Applied Optics, 2006, 45(22): 5453-5469.

[15] 余毅, 常松涛, 王旻, 等. 宽动态范围红外测量系统的快速非均匀性校正[J]. 光学 精密工程, 2015, 23(7): 1932-1938.

    YU Y, CHANG S T, WANG M, et al.. Fast non-uniformity correction for high dynamic infrared radiometric system[J]. Opt. Precision Eng., 2015, 23(7): 1932-1938. (in Chinese)

[16] 程万胜, 赵杰, 蔡鹤皋. CCD像素响应非均匀的校正方法[J]. 光学 精密工程, 2008, 16(2): 314-318.

    CHENG W SH, ZHAO J, CAI H G. Correction method for pixel response nonuniformity of CCD[J]. Opt. Precision Eng., 2008, 16(2): 314-318. (in Chinese)

[17] POWELL S B, GRUEV V. Calibration methods for division-of-focal-plane polarimeters[J]. Optics Express, 2013, 21(18): 21039-21055.

[18] CHEN ZH Y, WANG X, LIANG R G. Calibration method of microgrid polarimeters with image interpolation[J]. Applied Optics, 2015, 54(5): 995-1001.

[19] ZHANG J CH, LUO H B, HU B, et al.. Non-uniformity correction for division of focal plane polarimeters with a calibration method[J]. Applied Optics, 2016, 55(26): 7236-7240.

[20] 彭勇, 冯斌, 史泽林, 等. 微偏振片阵列成像的非均匀校正研究[J]. 红外与激光工程, 2017, 46(4): 404004.

    PENG Y, FENG B, SHI ZH L, et al.. Non-uniformity correction in polarization imaging obtained with integrated microgrid polarimeters[J]. Infrared and Laser Engineering, 2017, 46(4): 404004. (in Chinese)

[21] HUBBS J E, GRAMERA MARK E, MAESTAS-JEPSON D, et al.. Measurement of the radiometric and polarization characteristics of a microgrid polarizer infrared focal plane array[J]. Proceedings of SPIE, 2006, 6295: 62950C.

[22] BOWERS D L, BOGER J K, WELLEMS D, et al.. Unpolarized calibration and nonuniformity correction for long-wave infrared microgrid imaging polarimeters[J]. Optical Engineering, 2008, 47(4): 046403.

[23] BOWERS D L, BOGER J K, WELLEMS L D, et al.. Evaluation and display of polarimetric image data using long-wave cooled microgrid focal plane arrays[J]. Proceedings of SPIE, 2006, 6240: 62400F.

刘海峥, 史泽林, 冯斌. 微偏振片阵列红外成像非均匀性产生机理及其校正[J]. 光学 精密工程, 2018, 26(2): 480. LIU Hai-zheng, SHI Ze-lin, FENG Bin. Mechanism and calibration of non-uniformity for IR polarization imagery obtained with integrated micro-polarizer array[J]. Optics and Precision Engineering, 2018, 26(2): 480.

本文已被 2 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!