强激光与粒子束, 2005, 17 (1): 37, 网络出版: 2006-04-28   

飞秒激光-薄膜靶相互作用中超热电子产额和激光转化效率

Yield of hot electrons and conversion efficiency of laser energy in femtosecond laser-foil targets
作者单位
1 中国工程物理研究院,激光聚变研究中心,四川,绵阳,621900
2 内江师范学院,物理系,四川,内江,641112
摘要
在激光能量130 mJ(靶面),脉宽60 fs,波长800 nm,对比度1∶10-6,激光与靶法线成45°夹角,P偏振,靶面激光峰值功率密度约为7.0×1017 W·cm-2,无预脉冲的条件下,采用电子谱仪与经γ标准源标定的LiF热释光探测器(TLD)相配合,测量了飞秒激光-薄膜靶相互作用中产生的超热电子能谱.根据所测的能谱,推算出超热电子的产额和激光能量转化为超热电子能量的效率,在靶法线方向分别为1.19×1010/sr和4.55%/sr,在激光反射方向分别为1.83×109/sr和0.76%/sr.结果显示,不同方向的超热电子产额和激光转化效率有所不同,原因在于激光-等离子体相互作用产生的超热电子构成各向异性的分布.
Abstract
The energy spectra of hot electrons have been measured using the magnetic spectrometers, fitted with the LiF thermoluminescent dosimeter (TLD) which were calibrated using Cs137 γ-ray sources, in the interaction of a 130 mJ, 60 fs, 800 nm, 1∶10-6, 7.0×1017 W·cm-2 P-polarized laser incidence on Cu foil target at an angle of 45° with respect to the target normal without any prepulse. The yield of hot electrons and the conversion efficiency of laser energy to energy of hot electrons are 1.19×1010/sr and 4.55%/sr at the normal of target and are 1.83×109/sr and 0.76%/sr at the specular direction of laser, which were deduced from the energy spectra of hot electrons. They were different at various direction because of the hot electrons produced in the interaction of laser-plasma constituted an anisotropy distribution.
参考文献

[1] Tabak M, Hammer J, Glisky M E, et al. Ignition and high gain with ultrapowerful lasers[J]. Phys Plasmas, 1994, 1 (5) :1626.

[2] Forslund D W, Kindel J M, Lee K, et al. Theory and simulation of resonant absorption in a hot plasma[J]. Phys Rev A, 1975, 11 (2):679.

[3] Brunel F. Not-so-resonant, resonant absorption[J]. Phys Rev Lett, 1987, 59 (1): 52.

[4] Brunel F. Anomalous absorption of high intensity subpicosecond laser pulses[J]. Phys Fluids, 1988, 31 (9) : 2714.

[5] Malka G, Fuchs J, Amiranoff F, et al. Superthermal electron generation and channel formation by an ultrarelativistic laser pulse in an underdense preformed plasma[J]. Phys Rev Lett, 1997, 79 (11): 2053.

[6] Liu S B, Zhang J, Yu W. Acceleration and double-peak spectrum of hot electrons in relativistic laser plasmas[J]. Phys Rev E, 1999, 60(3): 3279.

[7] Sprangle P, Esarey E, Ting A, et al. Laser wakefield acceleration and relativistic optical guiding[J]. Appl Phys Lett, 1988, 53 (22) :2146.

[8] Amiranoff F, Baton S, Bernard D, et al. Observation of laser wakefield acceleration of electrons[J]. Phys Rev Lett, 1998, 81 (5) :995.

[9] Malka G, Miquel J L. Experimental confirmation of ponderomotive-force electrons produced by an ultrarelativistic laser pulse on a solid target[J]. Phys Rev Lett, 1996, 77 (1): 75.

[10] Feurer T, Theobald W, Sauerbrey R, et al. Onset of diffuse reflectivity and fast electron flux inhibition in 528-nm-laser-solid interactions at ultrahigh intensity[J]. Phys Rev E, 1997, 56 (4): 4608.

[11] Beg F N, Bell A R, Dangor A E, et al. A study of picosecond laser-solid interactions up to 1019 W · cm-2[J]. Phys Plasmas, 1997, 4(2): 447.

[12] Malka G, Lefebvre E, Miquel J L. Experimental observation of electrons accelerated in vacuum to relativistic energies by a high-intensity laser[J]. Phys Rev Lett, 1997, 78 (17) :3314.

[13] Yu J, Jiang Z, Kieffer J C, et al. Hard X-ray emission in high intensity femtosecond laser-target interaction[J]. Phys Plasmas, 1999, 6(4): 1318.

[14] Zhidkov A, Sasaki A, Utsumi T, et al. Prepulse effects on the interaction of intense femtosecond laser pulses with high-Z solids[J]. Phys Rev E, 2000, 62 (5): 7232.

[15] Schnurer M, Nolte R, Rousse A, et al. Dosimetric measurements of electron and photon yields from solid targets irradiated with 30 fs pulses from a 14 TW laser[J]. Phys Rev E, 2000, 61 (4): 4394.

[16] Zhidkov A G, Sasaki A, Fukumoto I, et al. Pulse duration effect on the distribution of energetic particles produced by intense femtosecond laser pulses irradiating solids[J]. Phys Plasmas, 2001, 8 (8) : 3718.

[17] Chen L M, Zhang J, Teng H, et al. Experimental study of a subpicosecond pulse laser interacting with metallic and dielectric targets[J].Phys Rev E, 2001, 63, 036403-1.

[18] Giulietti D, Galimberti M, Giulietti A, et al. Production of ultracollimated bunches of multi-MeV electrons by 35fs laser pulses propagating in exploding-foil plasmas[J]. Phys Plasmas, 2001, 9 (9): 3655.

[19] 蔡达锋,谷渝秋,郑志坚,等.超短超强激光与固体靶相互作用中超热电子的角分布[J].强激光与粒子束,2004,16(5):587.
Cai D F,Gu Y Q, Zheng Z J, et al. Angular distribution of hot electrons generated by ultra-short ultra-intense laser interaction with solid targets.High Power Laser and Particle Beams, 2004, 16 (5): 587.

[20] Bilski P, Budzanowski M, Olko P, et al. Properties of different thin-layer LiF: Mg, Cu, P TL detectors for beta dosimetry[J]. Radiat Prot Dosim, 1996, 66 (1-4): 101.

[21] 蔡达锋,谷渝秋,郑志坚,等.用于电子能谱测量的LiF热释光探测器标定[J].强激光与粒子束,2003,15(2):141.
Cai D F,Gu Y Q,Zheng Z J, et al. Calibration of LiF thermoluminescence dosimeters used to measure the electron energy spectrum. High Power Laser and Particle Beams,2003,15(2):141.

[22] 蔡达锋,谷渝秋,郑志坚,等.飞秒激光与等离子体相互作用过程中超热电子能谱的测量[J].强激光与粒子束,2003,15(6):575.
Cai D F, Gu Y Q, Zheng Z J, et al. Measurement of hot electron energy spectrum in femtosecond laser-plasma. High Power Laser and Particle Beams, 2003, 15 (6) : 575.

[23] Catto P J, Richard M. Sheath inverse bremsstrahlung in laser produced plasmas[J]. Phys Fluids, 1977, 20 (4) : 704.

蔡达锋, 谷渝秋, 郑志坚, 周维民, 焦春晔, 温天舒, 淳于书泰. 飞秒激光-薄膜靶相互作用中超热电子产额和激光转化效率[J]. 强激光与粒子束, 2005, 17(1): 37. CAI Da-feng, GU Yu-qiu, ZHENG Zhi-jian, ZHOU Wei-min, JIAO Chun-ye, WEN Tian-shu, CHUNYU Shu-tai. Yield of hot electrons and conversion efficiency of laser energy in femtosecond laser-foil targets[J]. High Power Laser and Particle Beams, 2005, 17(1): 37.

本文已被 4 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!