强激光与粒子束, 2012, 24 (1): 16, 网络出版: 2012-02-14   

真空高功率微波介质窗表面击穿破坏现象的研究进展

Research progress of dielectric window surface breakdown phenomena under HPM in vacuum
作者单位
1 西安交通大学 电力设备电气绝缘国家重点实验室, 西安 710049
2 西北核技术研究所, 西安 710024
3 中国工程物理研究院 应用电子学研究所, 四川 绵阳 621900
摘要
综述了国内外真空中高功率微波(HPM)下介质窗表面击穿问题的研究现状和进展。在介质窗表面击穿实验研究方面, 介绍了国外最具代表性的研究成果, 给出了介质窗材料表面及内部的破坏发展规律, 并提出相应的理论模型。在理论仿真方面, 重点介绍了国外在运用蒙特卡罗(Monte Carlo)程序和PIC模型对认识HPM下介质窗表面倍增放电机理上做出的突出贡献, 给出了HPM下介质窗表面电子在不同影响因素下的运行状态, 并提出了一个理论模型, 从本质上解释了倍增电子数目和表面静电场以微波频率的2倍振荡的原因。介绍了目前几种可有效抑制介质窗表面微波击穿的技术手段。
Abstract
The paper reviews the worldwide research status and progress of dielectric window (DW) breakdown in vacuum under high power microwave (HPM). With respect to experimental studies, representative research results aboard are introduced, and the laws of breakdown development on the DW surface and inside the DW and the corresponding theoretical model are presented according to the results introduced combined with our research. With respect to theory and simulation studies, the progress aboard in understanding the mechanism of DW surface multipactor discharge under HPM is discussed, which is achieved with Monte Carlo and particle-in-cell simulations. Then along with our research, motion laws of DW surface electrons with diffe-rent emission angles and microwave electromagnetic parameters are introduced, and another theoretical model is proposed, which can essentially explain why the multipactor electron number and the surface electrostatic field oscillate at a frequency twice that of the HPM. Finally, several effective DW breakdown suppression technologies are summarized.
参考文献

[1] Barker R J, Schamiloglu E. High-power microwave sources and technologies[M]. New Jersey: IEEE Press, 2001: 325-375.

[2] Vaughan J R M. Some high-power window failures[J]. IEEE Trans on Electron Devices, 1961, 8(4):302-308.

[3] Preist D H, Talcott R C. On the heating of output windows of microwave tubes by electron bombardment[J]. IEEE Trans on Electron Devices, 1961, 8(4): 243-251.

[4] Neuber A, Dickens J, Hemmert D, et al. Window breakdown caused by high-power microwaves[J]. IEEE Trans on Plasma Sci, 1998, 26 (3): 296-303.

[5] Neuber A, Hemmert D, Krompholz H, et al. Initiation of high power microwave dielectric interface breakdown[J]. J Appl Phys, 1999, 86(3): 1724-1728.

[6] 李健. 介质界面HPM击穿及行波环的研究[D]. 成都:电子科技大学, 2006: 19-37.(Li Jian. Breakdown on dielectric surface under HPM and study of travelling wave ring. Chengdu: University of Electronic Science and Technology of China, 2006: 19-37)

[7] 郝西伟, 秋实, 侯青, 等. X波段高功率微波对介质窗材料的破坏现象[J]. 强激光与粒子束, 2009, 21(1): 97-102.(Hao Xiwei, Qiu Shi, Hou Qing, et al. Damage phenomena of dielectric window material under X-band high power microwave. High Power Laser and Particle Beams, 2009, 21(1): 97-102)

[8] 黄惠军, 常超, 侯青, 等. 真空条件下介质窗表面微波击穿实验[J]. 强激光与粒子束, 2010, 22(4):845-848.(Huang Huijun, Chang Chao, Hou Qing, et al. Experimental studies on dielectric surface breakdown at vacuum conditions under high-power microwave excitation. High Power Laser and Particle Beams, 2010, 22(4):845-848)

[9] Qiu Shi, Hao Xiwei, Zhang Guanjun, et al. Tree-like breakdown phenomena of dielectric window under X-band high power microwave in vacuum[J]. IEEE Trans on Dielectrics and Electrical Insulation, 2010, 17(3): 971-977.

[10] Hao Xiwei, Zhang Guanjun, Qiu Shi, et al. Investigation on dielectric window treelike breakdown and suppression under HPM in vacuum[J]. IEEE Trans on Plasma Sci, 2010, 38(6): 1403-1410.

[11] Kishek R A, Lau Y Y. Interaction of multipactor discharge and RF circuits[J]. Phys Rev Lett, 1995, 75(6): 1218-1222.

[12] Kishek R A, Lau Y Y. Multipactor discharge on a dielectric[J]. Phys Rev Lett, 1998, 80(1): 193-196.

[13] Ang L K, Lau Y Y, Kishek R A, et al. Power deposited on a dielectric by multipactor[J]. IEEE Trans on Plasma Sci, 1998, 26(3): 290-295.

[14] Kim H C, Verboncoeur J P. Time-dependent physics of a single-surface multipactor discharge[J]. Phys Plasmas, 2005, 12:123504.

[15] Kim H C, Verboncoeur J P. Modeling RF window breakdown: from vacuum multipactor to RF plasma[J]. IEEE Trans on Dielectrics and Electrical Insulation, 2007, 14(4):766-772.

[16] Chang chao, Liu Guozhi, Tang Chuanxiang, et al. The influence of desorption gas to high power microwave window multipactor[J]. Phys Plasmas, 2008, 15:093508.

[17] Chang chao, Liu Guozhi, Tang Chuanxiang, et al. The influence of space charge shielding on dielectric multipactor[J]. Phys Plasmas, 2009, 16:053506.

[18] 蔡利兵, 王建国. 介质表面高功率微波击穿的数值模拟[J]. 物理学报. 2009, 58(5):3268-3273.(Cai Libing, Wang Jianguo. Numerical simulation of the breakdown on HPM dielectric surface. Acta Physica Sinica, 2009, 58(5): 3268-3273)

[19] Cheng Guoxin, Liu Lie. Temporal evolution of multipactor electron discharge on a dielectric under excitation of high-power microwave[J]. IEEE Trans on Plasma Sci, 2011, 39(4): 1067-1074.

[20] Vaughan J R M. A new formula for secondary emission yield[J]. IEEE Trans on Electron Devices, 1989, 36(9): 1963-1967.

[21] 郝西伟, 张冠军, 黄文华, 等. 高功率微波作用下介质窗表面电子运动2维仿真[J]. 强激光与粒子束, 2010, 22(1): 99-104.(Hao Xiwei, Zhang Guanjun, Huang Wenhua, et al. 2-D simulation of electron movement on dielectric window surface under high power microwave. High Power Laser and Particle Beams, 2010, 22(1): 99-104)

[22] Proch D, Einfeld D, Onken R, et al. Measurement of multipacting currents of metal surfaces in RF fields[C]//Proc of 1995 IEEE International Particle Accelerator Conference. 1995:1776-1779.

[23] Vaughan J R M. Multipactor[J]. IEEE Trans on Electron Devices, 1988, 35(7): 1172-1180.

[24] Michizono S, Kinbara A, Saito Y, et al. TiN film coatings on alumina radio frequency windows[J]. J Vac Sci Technol, 1992, 10(4): 1180-1184.

[25] Chang chao, Huang Huijun, Liu Guozhi, et al. The effect of grooved surface on dielectric multipactor[J]. J Appl Phys, 2009, 105: 123305.

[26] Neuber A A, Edmiston G F, Krile J T, et al. Interface breakdown during high-power microwave transmission[J]. IEEE Trans on Magne-tics, 2007, 43(1): 496-500.

[27] Tanabe E, Mceuen A, Trail M, et al. Field emission in microwave cavity[J]. Appl Surf Sci, 1994, 76: 16-20.

[28] Matsumoto H, Akemoto K, Hayano H. Applications of hot isostatic pressing for high gradient accelerator structures[C]//Proc IEEE International Particle Accelerator Conference. 1991: 1008-1011.

[29] Zhang Guanjun, Zhao Wenbin, Ma Xinpei, et al. Investigation on surface insulation strength of machinable ceramic material under pulsed voltage in vacuum[J]. Journal of the Vacuum Society of Japan, 2007, 50(5):332-336.

[30] 郭笑坤, 殷立新, 詹茂盛. 低介质损耗雷达罩用复合材料的研究进展[J]. 高科技纤维与应用, 2003, 28(6):29-33.(Guo Xiaokun, Yin Li-xin, Zhan Maosheng. Progress in the research of low loss tangent polymer-matrix composites for radomes. Hi-Tech Fiber and Application, 2003, 28(6): 29-33)

郝西伟, 宋佰鹏, 张冠军, 秋实, 黄文华, 秦风, 金晓. 真空高功率微波介质窗表面击穿破坏现象的研究进展[J]. 强激光与粒子束, 2012, 24(1): 16. Hao Xiwei, Song Baipeng, Zhang Guanjun, Qiu Shi, Huang Wenhua, Qin Feng, Jin Xiao. Research progress of dielectric window surface breakdown phenomena under HPM in vacuum[J]. High Power Laser and Particle Beams, 2012, 24(1): 16.

本文已被 5 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!