中国激光, 2018, 45 (5): 0510006, 网络出版: 2018-05-02   

基于空气悬浮芯微结构光纤的高灵敏度荧光检测系统 下载: 791次

High Sensitivity Fluorescence Detection System Based on Air Suspended Core Microstructural Fiber
作者单位
北京工业大学激光工程研究院, 北京市激光应用技术工程技术研究中心, 北京 100124
引用该论文

张炤, 王秀翃, 乔鹏飞, 刘倩倩, Lang Marion, 冯宪, 王璞. 基于空气悬浮芯微结构光纤的高灵敏度荧光检测系统[J]. 中国激光, 2018, 45(5): 0510006.

Zhang Zhao, Wang Xiuhong, Qiao Pengfei, Liu Qianqian, Lang Marion, Feng Xian, Wang Pu. High Sensitivity Fluorescence Detection System Based on Air Suspended Core Microstructural Fiber[J]. Chinese Journal of Lasers, 2018, 45(5): 0510006.

参考文献

[1] 黄惠杰, 翟俊辉, 任冰强, 等. 光纤倏逝波生物传感器及其应用[J]. 光学学报, 2003, 15(4): 652-655.

    黄惠杰, 翟俊辉, 任冰强, 等. 光纤倏逝波生物传感器及其应用[J]. 光学学报, 2003, 15(4): 652-655.

    Huang H J, Zhai J H, Ren B Q, et al. Fiber-optic evanescent wave biosensor and its applications[J]. Acta Optica Sinica, 2003, 15(4): 652-655.

    Huang H J, Zhai J H, Ren B Q, et al. Fiber-optic evanescent wave biosensor and its applications[J]. Acta Optica Sinica, 2003, 15(4): 652-655.

[2] 黄惠杰, 翟俊辉, 赵永凯, 等. 多探头光纤倏逝波生物传感器及其性能研究[J]. 中国激光, 2004, 31(6): 718-722.

    黄惠杰, 翟俊辉, 赵永凯, 等. 多探头光纤倏逝波生物传感器及其性能研究[J]. 中国激光, 2004, 31(6): 718-722.

    Huang H J, Zhai J H, Zhao Y K, et al. Multi-probe fiber-optic evanescent wave biosensor and its characterization[J]. Chinese Journal of Lasers, 2004, 31(6): 718-722.

    Huang H J, Zhai J H, Zhao Y K, et al. Multi-probe fiber-optic evanescent wave biosensor and its characterization[J]. Chinese Journal of Lasers, 2004, 31(6): 718-722.

[3] Monro T M, Belardi W, Furusawa K, et al. Sensing with microstructured optical fibres[J]. Measurement Science & Technology, 2001, 12(7): 854.

    Monro T M, Belardi W, Furusawa K, et al. Sensing with microstructured optical fibres[J]. Measurement Science & Technology, 2001, 12(7): 854.

[4] Ebendorff-Heidepriem H, Monro T M. Extrusion of complex preforms for microstructured optical fibers[J]. Optics Express, 2007, 15(23): 15086-15092.

    Ebendorff-Heidepriem H, Monro T M. Extrusion of complex preforms for microstructured optical fibers[J]. Optics Express, 2007, 15(23): 15086-15092.

[5] Jensen J B, Pedersen L H, Hoiby P E. et al. Photonic crystal fiber based evanescent-wave sensor for detection of biomolecules in aqueous solutions[J]. Optics Letters, 2004, 29(17): 760-762.

    Jensen J B, Pedersen L H, Hoiby P E. et al. Photonic crystal fiber based evanescent-wave sensor for detection of biomolecules in aqueous solutions[J]. Optics Letters, 2004, 29(17): 760-762.

[6] Smolka S, Barth M, Benson O. Highly efficient fluorescence sensing with hollow core photonic crystal fibers[J]. Optics Express, 2007, 15(20): 12783-12791.

    Smolka S, Barth M, Benson O. Highly efficient fluorescence sensing with hollow core photonic crystal fibers[J]. Optics Express, 2007, 15(20): 12783-12791.

[7] Bise RT, Windeler RS, Kranz KS, et al. Tunable photonic band gap fiber[C]. Optical Fiber Communication Conference and Exhibit, 2002: 466- 468.

    Bise RT, Windeler RS, Kranz KS, et al. Tunable photonic band gap fiber[C]. Optical Fiber Communication Conference and Exhibit, 2002: 466- 468.

[8] Hoo Y L, Jin W, Ho H L, et al. Measurement of gas diffusion coefficient using photonic crystal fiber[J]. IEEE Photonics Technology Letters, 2003, 15(10): 1434-1436.

    Hoo Y L, Jin W, Ho H L, et al. Measurement of gas diffusion coefficient using photonic crystal fiber[J]. IEEE Photonics Technology Letters, 2003, 15(10): 1434-1436.

[9] Du F, Lu Y Q, Wu S T. Electrically tunable liquid-crystal photonic crystal fiber[J]. Applied Physics Letters, 2004, 85(12): 2181-2183.

    Du F, Lu Y Q, Wu S T. Electrically tunable liquid-crystal photonic crystal fiber[J]. Applied Physics Letters, 2004, 85(12): 2181-2183.

[10] 许震宇, 张若京, 龚益玲. 光子晶体压力传感器的基本原理[J]. 物理学报, 2004, 53(3): 724-727.

    许震宇, 张若京, 龚益玲. 光子晶体压力传感器的基本原理[J]. 物理学报, 2004, 53(3): 724-727.

    Xu Z Y, Zhang R J, Gong Y L. The principles of pressure sensors based on photonic crystal[J]. Acta Physica Sinica, 2004, 53(3): 724-727.

    Xu Z Y, Zhang R J, Gong Y L. The principles of pressure sensors based on photonic crystal[J]. Acta Physica Sinica, 2004, 53(3): 724-727.

[11] MagalhaesF, Carvalho JP, Ferreira LA, et al. Methane detection system based on wavelength modulation spectroscopy and hollow-core fibres[C]. IEEE Sensors Conference, 2008: 1277- 1280.

    MagalhaesF, Carvalho JP, Ferreira LA, et al. Methane detection system based on wavelength modulation spectroscopy and hollow-core fibres[C]. IEEE Sensors Conference, 2008: 1277- 1280.

[12] Wei H, Song K, Tong W. et al. Some features of the photonic crystal fiber temperature sensor with liquid ethanol filling[J]. Optics Express, 2010, 18(15): 15383-15388.

    Wei H, Song K, Tong W. et al. Some features of the photonic crystal fiber temperature sensor with liquid ethanol filling[J]. Optics Express, 2010, 18(15): 15383-15388.

[13] 王若琪, 姚建铨, 周睿, 等. 填充混合液体的光子晶体光纤温度传感研究[J]. 光电子·激光, 2011, 22(11): 1609-1612.

    王若琪, 姚建铨, 周睿, 等. 填充混合液体的光子晶体光纤温度传感研究[J]. 光电子·激光, 2011, 22(11): 1609-1612.

    Wang R Q, Yao J Q, Zhou R, et al. Research of photonic crystal fiber temperature sensor with mixture liquid filling[J]. Journal of Optoelectronics·Laser, 2011, 22(11): 1609-1612.

    Wang R Q, Yao J Q, Zhou R, et al. Research of photonic crystal fiber temperature sensor with mixture liquid filling[J]. Journal of Optoelectronics·Laser, 2011, 22(11): 1609-1612.

[14] Lou J, Tong L, Ye Z. Modeling of silica nanowires for optical sensing[J]. Optics Express, 2005, 13(6): 2135-2140.

    Lou J, Tong L, Ye Z. Modeling of silica nanowires for optical sensing[J]. Optics Express, 2005, 13(6): 2135-2140.

[15] Polynkin P, Polynkin A, Peyghambarian N, et al. Evanescent field-based optical fiber sensing device for measuring the refractive index of liquids in microfluidic channels[J]. Optics Letters, 2005, 30(11): 1273-1275.

    Polynkin P, Polynkin A, Peyghambarian N, et al. Evanescent field-based optical fiber sensing device for measuring the refractive index of liquids in microfluidic channels[J]. Optics Letters, 2005, 30(11): 1273-1275.

[16] Chen G Y, Zhang X L, Brambilla G. et al. Theoretical and experimental demonstrations of a microfiber-based flexural disc accelerometer[J]. Optics Letters, 2011, 36(18): 3669-3671.

    Chen G Y, Zhang X L, Brambilla G. et al. Theoretical and experimental demonstrations of a microfiber-based flexural disc accelerometer[J]. Optics Letters, 2011, 36(18): 3669-3671.

[17] Villatoro J, Monzón-Hernández D. Fast detection of hydrogen with nano fiber tapers coated with ultra thin palladium layers[J]. Optics Express, 2005, 13(13): 5087-5092.

    Villatoro J, Monzón-Hernández D. Fast detection of hydrogen with nano fiber tapers coated with ultra thin palladium layers[J]. Optics Express, 2005, 13(13): 5087-5092.

[18] Zhang L, Gu F, Lou J. et al. Fast detection of humidity with a subwavelength-diameter fiber taper coated with gelatin film[J]. Optics Express, 2008, 16(17): 13349-13353.

    Zhang L, Gu F, Lou J. et al. Fast detection of humidity with a subwavelength-diameter fiber taper coated with gelatin film[J]. Optics Express, 2008, 16(17): 13349-13353.

[19] Brambilla G, Finazzi V, Richardson D J. Ultra-low-loss optical fiber nanotapers[J]. Optics Express, 2004, 12(10): 2258-2263.

    Brambilla G, Finazzi V, Richardson D J. Ultra-low-loss optical fiber nanotapers[J]. Optics Express, 2004, 12(10): 2258-2263.

[20] Shi J, Feng X, Lian Z, et al. Fabrication of multiple parallel suspended-core optical fibers by sheet-stacking[J]. Optical Fiber Technology, 2014, 20(4): 395-402.

    Shi J, Feng X, Lian Z, et al. Fabrication of multiple parallel suspended-core optical fibers by sheet-stacking[J]. Optical Fiber Technology, 2014, 20(4): 395-402.

[21] Shi J D, Feng X, Horak P. et al. A fiberized highly birefringent glass micrometer-size ridge waveguide[J]. Optical Fiber Technology, 2015, 23: 137-144.

    Shi J D, Feng X, Horak P. et al. A fiberized highly birefringent glass micrometer-size ridge waveguide[J]. Optical Fiber Technology, 2015, 23: 137-144.

[22] Ebendorff-HeidepriemH, PetropoulosP, MooreR, et al. Fabrication and optical properties of lead silicate glass holey fibers[J]. Journal of Non-Crystalline Solids, 2004, 345/346: 293- 296.

    Ebendorff-HeidepriemH, PetropoulosP, MooreR, et al. Fabrication and optical properties of lead silicate glass holey fibers[J]. Journal of Non-Crystalline Solids, 2004, 345/346: 293- 296.

[23] Afshar S, Warren-Smith S, Monro T M. Enhancement of fluorescence-based sensing using microstructured optical fibres[J]. Optics Express, 2007, 15(26): 17891-17901.

    Afshar S, Warren-Smith S, Monro T M. Enhancement of fluorescence-based sensing using microstructured optical fibres[J]. Optics Express, 2007, 15(26): 17891-17901.

[24] Ruan Y, Schartner E P, Ebendorff-Heidepriem H, et al. Detection of quantum-dot labelled proteins using soft glass microstructured optical fibers[J]. Optics Express, 2007, 15(26): 17819-17826.

    Ruan Y, Schartner E P, Ebendorff-Heidepriem H, et al. Detection of quantum-dot labelled proteins using soft glass microstructured optical fibers[J]. Optics Express, 2007, 15(26): 17819-17826.

[25] Ruan Y L, Foo T C, Warren-Smith S, et al. Antibody immobilization within glass microstructured fibers: a route to sensitive and selective biosensors[J]. Optics Express, 2008, 16(22): 18514-18523.

    Ruan Y L, Foo T C, Warren-Smith S, et al. Antibody immobilization within glass microstructured fibers: a route to sensitive and selective biosensors[J]. Optics Express, 2008, 16(22): 18514-18523.

[26] Nguyen L V, Warren-Smith S, Cooper A. et al. Molecular beacons immobilized within suspended core optical fiber for specific DNA detection[J]. Optics Express, 2012, 20(28): 29378-29385.

    Nguyen L V, Warren-Smith S, Cooper A. et al. Molecular beacons immobilized within suspended core optical fiber for specific DNA detection[J]. Optics Express, 2012, 20(28): 29378-29385.

[27] Warren-Smith S, Nie G C, Schartner E P. et al. Enzyme activity assays within microstructured optical fibers enabled by automated alignment[J]. Biomedical Optics Express, 2012, 3(12): 3304-3313.

    Warren-Smith S, Nie G C, Schartner E P. et al. Enzyme activity assays within microstructured optical fibers enabled by automated alignment[J]. Biomedical Optics Express, 2012, 3(12): 3304-3313.

张炤, 王秀翃, 乔鹏飞, 刘倩倩, Lang Marion, 冯宪, 王璞. 基于空气悬浮芯微结构光纤的高灵敏度荧光检测系统[J]. 中国激光, 2018, 45(5): 0510006. Zhang Zhao, Wang Xiuhong, Qiao Pengfei, Liu Qianqian, Lang Marion, Feng Xian, Wang Pu. High Sensitivity Fluorescence Detection System Based on Air Suspended Core Microstructural Fiber[J]. Chinese Journal of Lasers, 2018, 45(5): 0510006.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!