激光生物学报, 2013, 22 (6): 486, 网络出版: 2015-07-21   

生物组织光声粘弹显微成像

The Photoacoustic and Viscoelastic Microscopy of Biological Tissues
作者单位
华南师范大学生物光子学研究院激光生命科学研究所、暨激光生命科学教育部重点实验室, 广东 广州 510631
摘要
提出一种反演生物组织粘弹信息的新型无损光声粘弹显微成像方法, 它是以强度调制激光作为激发源, 通过检测光声(Photoacoustic, PA)信号的相位重建组织粘弹特性分布的成像方法。实验利用不同浓度的琼脂样品来验证光声粘弹显微测量中相位随浓度变化的依赖关系。利用埋有头发丝的琼脂样品来测试这种显微方法的成像分辨率。利用具有不同粘弹性的离体生物组织来验证系统的成像能力。实验结果表明, 这种新方法能够高分辨率和高对比度地重建出具有不同粘弹性的生物组织的光声粘弹显微图像, 有望实现组织结晶类病变水平的显微在体检测。
Abstract
A novel and noninvasive photoacoustic and viscoelastic microscopy method that provides viscoelastic information of biological tissues is presented. The imaging method uses intensity-modulated laser to generate photoacoustic (PA) signal, and maps the viscoelasticity distribution of tissues by detecting the phase of PA signal. Gelatin phantoms with different densities were used to verify the dependence of phase on the gelatin concentrations with the photoacoustic and viscoelastic microscopy measurements. Gelatin buried hairs were used to testify the imaging resolution of this microscopic method. In vitro tissues with different viscoelasticity were used to testify the imaging capabilities of this system. The experimental results demonstrated that this novel method has high resolution and high contrast, capable of reconstructing the microscopic images of biological tissues with different viscoelasticity, and has the potential to achieve in vivo microscopic detection of the crystal lesions of tissues.
参考文献

[1] FERRY J D. Viscoelastic properties of polymers[M]. New York: Wiley, 1980. 672.

[2] KOVACH I S. A molecular theory of cartilage viscoelasticity[J]. Biophys Chem, 1996, 59 (1-2): 61-73.

[3] YANG D W, XING D, GU H M, et al. Fast multielement phase-controlled photoacoustic imaging based on limited-field-filtered back-projection algorithm[J]. Appl Phys Lett, 2005, 87(19): 194101.

[4] WANG Y, XING D, ZENG Y G, et al. Photoacoustic imaging with deconvolution algorithm [J]. Phys Med Biol, 2004, 49(14): 3117.

[5] LOU C, YANG S, JI Z, et al. Ultrashort microwave-induced thermoacoustic imaging: a breakthrough in excitation efficiency and spatial resolution [J]. Phys Rev Lett, 2012, 109(21): 218101.

[6] JETZFELLNER T, NTZIACHRISTOS V. Performance of blind deconvolution in optoacoustic tomography [J]. J Innov Opt Health Sci, 2011, 4 (4): 385-393.

[7] EIKJE N S. Potential of in vivo latent-time estimation by laser and optical techniques in clinical and experimental dermatology [J]. J Innov Opt Health Sci, 2011, 4 (4): 421-428.

[8] YANG S H, XING D, LAO Y Q, et al. Noninvasive monitoring of traumatic brain injury and posttraumatic rehabilitation with laser-induced photoacoustic imaging [J]. Appl Phys Lett, 2007, 90(24): 243902.

[9] WANG B, YANTSEN E, LARSON T, et al. Plasmonic intravascular photoacoustic imaging for detection of macrophages in atherosclerotic plaques [J]. Nano Lett, 2009, 9(6): 2212-2217.

[10] YANG S H, XING D, ZHOU Q, et al. Functional imaging of cerebrovascular activities in small animals using high-resolution photoacoustic tomography[J]. Med Phys, 2007, 34(8): 3294-3301.

[11] ZENG Y G, XING D, WANG Y, et al. Photoacoustic and ultrasonic coimage with a linear transducer array[J]. Opt Lett, 2004, 29(15): 1760-1762.

[12] LAO Y Q, XING D, YANG S H, et al. Noninvasive photoacoustic imaging of the developing vasculature during early tumor growth[J]. Phys Med Biol, 2008, 53(15): 4203-4212.

[13] YIN B, XING D, WANG Y, et al. Fast photoacoustic imaging system based on 320-element linear transducer array[J]. Phys Med Biol, 2004, 49(7): 1339-1346.

[14] GAO G D, YANG S H, XING D. Viscoelasticity imaging of biological tissues with phase-resolved photoacoustic measurement[J]. Opt Lett, 2011, 36(17): 3341-3343.

[15] 张义同. 热粘弹性理论[M]. 天津: 天津大学出版社, 2002: 116.

    ZHANG Yitong. Thermoviscoelasticity theory[M]. Tianjing: Tianjin University Press, 2002: 116.

[16] 克里斯坦森R M. 粘弹性力学引论[M]. 北京: 科学出版社, 1990: 392.

    CHRISTENSEN R M. Introduction viscoelasticity[M]. Beijing: Science Press, 1990: 392.

[17] 徐芝纶. 弹性力学[M]. 北京: 高等教育出版, 2006: 308.

    XU Zhilun. Elasticity[M]. Beijing: Higher Education Press, 2006: 308.

[18] ZHAO Y, YANG S H. Photoacoustic viscoelasticity imaging of biological tissues with intensity modulated continuous-wave laser[J]. Innovative Optical Health Sciences, 2013, 6 (4): 1350033.

陈丛桂, 赵岳, 杨思华. 生物组织光声粘弹显微成像[J]. 激光生物学报, 2013, 22(6): 486. CHEN Conggui, ZHAO Yue, YANG Sihua. The Photoacoustic and Viscoelastic Microscopy of Biological Tissues[J]. Acta Laser Biology Sinica, 2013, 22(6): 486.

本文已被 5 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!