中国激光, 2012, 39 (8): 0802001, 网络出版: 2012-06-07   

基于无杂质空位混杂法制备带有无吸收窗口的940 nm GaInP/GaAsP/GaInAs半导体激光器研究

Study of 940 nm Semiconductor Lasers with Non-Absorb Window Structure Fabricated by Impurity-Free Vacancy Disordering
作者单位
长春理工大学高功率半导体激光国家重点实验室, 吉林 长春 130022
摘要
为提高940 nm半导体激光器抗灾变性光学损伤(COD)能力,采用无杂质空位量子阱混杂技术制备了带有无吸收窗口的940 nm GaInP/GaAsP/GaInAs半导体激光器。借助光致发光光谱分析了退火温度和介质膜厚度对GaInP/GaAsP/GaInAs单量子阱混杂的影响;通过电化学电容电压(EC-V)方法检测了经高温退火后激光器外延片的掺杂浓度分布的变化情况。实验发现,在875 ℃快速热退火条件下,带有磁控溅射法制备的200 nm厚的SiO2盖层样品发生蓝移达29.8 nm,而电子束蒸发法制备的200 nm厚TiO2样品在相同退火条件下蓝移量仅为4.3 nm。两种方法分别对蓝移起到很好的促进和抑制作用。将优化后的条件用于带有窗口结构的激光器器件制备,其抗COD能力提高了1.6倍。
Abstract
To improve catastrophic optical damage threshold power of 940 nm semiconductor laser, the 940 nm GaInP/GaAsP/GaInAs semiconductor laser with non-absorbing window is fabricated. The impacts of rapid thermal annealing (RTA) temperature and thickness of SiO2 on intermixing are evaluated by photoluminescence spectra. The distribution of doped concentration tested by electrochemical capacitance-voltage (EC-V) method is also studied. Experimental results show that, the samples coated by sputtering method with 200-nm SiO2 shows 29.8-nm blueshift at 875 ℃ after RTA. But the blue shift of samples coated with 200-nm TiO2 by electron beam evaporation method is only 4.3 nm, which ensures a large band gap shift in the window region and maintains original band gap in gain region simultaneously. The optimized condition is used on semiconductor lasers with non-absorption window (NAW). It is found that the COD threshold is improved 1.6 times, and the output power has been greatly improved.
参考文献

[1] H. Taniguchi, H. Ishii, R. Minato et al.. 25-W 915-nm laser with window structure fabricated by impurity-free vancancy disordering[J]. IEEE J. Selected Topics in Quantum Electronics, 2007, 13(5): 1176~1179

[2] C. L. Walker, A. C. Bryce, J. H. Marsh. Improved catastrophic optical damage level from laser with nonabsorbing mirrors[J]. IEEE Photon. Technol. Lett., 2002, 14(10): 1394~1396

[3] 乔忠良, 薄报学, 幺艳平 等. 基于AlxNy绝缘介质膜的新型窗口大功率半导体激光器[J]. 中国激光, 2009, 36(9): 2277~2281

    Qiao Zhongliang, Bo Baoxue, Yao Yanpin et al.. High power semiconductor laser of new window on insulation film of AlxNy[J]. Chinese J. Lasers, 2009, 36(9): 2277~2281

[4] 夏伟, 马德营, 王翎 等. 高透腔面大功率650 nm红光半导体激光器[J]. 中国激光, 2007, 34(9): 1182~1184

    Xia Wei, Ma Deying, Wang Ling et al.. High power 650 nm red semiconductor laser with transparent window[J]. Chinese J. Lasers, 2007, 34(9): 1182~1184

[5] Hery Susanto Djie, Ting Mei. Plasma-induced quantum well intermixing monolithic photonic integration[J]. IEEE J. Selected Topics in Quantum Electron., 2005, 11(2): 373~382

[6] 林涛, 段玉鹏, 郑凯 等. 带非吸收窗口的大功率657 nm半导体激光器[J]. 中国激光, 2009, 36(1): 104~109

    Lin Tao, Duan Yupeng, Zheng Kai et al.. High power 657 nm laser diode with non-absorbing windows[J]. Chinese J. Lasers, 2009, 36(1): 104~109

[7] J. Zhao, Z. C. Feng, Y. C. Wang et al.. Luminescent Characteristics of InGaAsP/InP Multiple Quantum Well Structures by Impurity-Free Vacancy Disordering[R]. MRS Online Proceedings Librory, 2002. ADP012585

[8] 周路, 王云华, 薄报学 等. 半导体激光器腔面增透膜AlN薄膜的制备[J]. 发光学报, 2011, 32(12): 1292~1296

    Zhou Lu, Wang Yunhua, Bo Baoxue et al.. Deposition of AlN film for AR coating of semiconductor lasers[J]. Chinese J. Luminescence, 2011, 32(12): 1292~1296

[9] 乔忠良, 薄报学, 高欣 等. 无吸收模式滤波结构高亮度大功率宽条形半导体激光器[J]. 中国激光, 2011, 38(4): 0402003

    Qiao Zhongliang, Bo Baoxue, Gao Xin et al.. High brightness high power broad area semiconductor lasers with no-absorption mode filter[J]. Chinese J. Lasers, 2011, 38(4): 0402003

[10] V. Hongpinyo, Y. H. Ding, C. E. Dimas et al.. Intermixing of InGaAs/GaAs quantum well using multiple cycles annealing Cu-doped SiO2[C]. Singapore: IEEE Photonics Global @ Singapore, 2008. 404753

[11] P. Cusumano, J. H. Marsh Ziegler, M. J. Rose et al.. High-quality extended cavity ridge lasers fabricated by impurity-free vacancy diffusion with a novel masking technique[J]. IEEE Photon. Technol. Lett., 1997, 9(3): 282~284

[12] P. L. Gareso, M. Buda, L. Fu et al.. Influence of SiO2 and TiO2 dielectric layers on the atomic intermixing of InxGa1-xAs/InP quantum well structure[J]. Semiconductor Sci. & Technol., 2007, 22(9): 988~992

[13] Ian Mckerracher, Jenny Wong-Leung, Greg Jolley et al.. Selective intermixing of InGaAs/GaAs quantum dot infrared photodetector[J]. IEEE J. Quantum Electron., 2011, 47(5): 577~590

[14] S. C. Du, L. Fu, H. H. Tan et al.. Investigation of impurity-free vacancy disordering in intermixing (Al)InGaAs(P)/InGaAs quantum wells[J]. Semiconductor Sci. & Technol., 2010, 25(5): 055014

[15] P. L. Gareso, M. Buda, M. Petravic et al.. Effect of rapid thermal annealing on the atomic intermixing of Zn-and C-doped InGaAs/AlGaAs quantum well laser structures[J]. J. Electrochem. Soc., 2006, 153(9): 878~882

[16] P. L. Gareso, M. Buda, L. Fu et al.. Suppression of thermal atomic interdiffusion in C-doped InGaAs/AlGaAs quantum well laser structures using TiO2 dielectric layers[J]. Appl. Phys. Lett., 2004, 85(23): 5583~5585

周路, 薄报学, 王云华, 贾宝山, 白端元, 乔忠良, 高欣. 基于无杂质空位混杂法制备带有无吸收窗口的940 nm GaInP/GaAsP/GaInAs半导体激光器研究[J]. 中国激光, 2012, 39(8): 0802001. Zhou Lu, Bo Baoxue, Wang Yunhua, Jia Baoshan, Bai Duanyuan, Qiao Zhongliang, Gao Xin. Study of 940 nm Semiconductor Lasers with Non-Absorb Window Structure Fabricated by Impurity-Free Vacancy Disordering[J]. Chinese Journal of Lasers, 2012, 39(8): 0802001.

本文已被 8 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!