激光与光电子学进展, 2019, 56 (21): 210101, 网络出版: 2019-11-02   

星地下行链路中多孔径相干光接收机性能分析 下载: 927次

Performance Analysis of Multi-Aperture Coherent Optical Receiver for Satellite-to-Ground Downlink
作者单位
1 贵州大学物理学院, 贵州 贵阳 550025
2 华中科技大学光学与电子信息学院, 湖北 武汉 430074
引用该论文

张晓玉, 崔晟, 刘德明, 江阳. 星地下行链路中多孔径相干光接收机性能分析[J]. 激光与光电子学进展, 2019, 56(21): 210101.

Xiaoyu Zhang, Sheng Cui, Deming Liu, Yang Jiang. Performance Analysis of Multi-Aperture Coherent Optical Receiver for Satellite-to-Ground Downlink[J]. Laser & Optoelectronics Progress, 2019, 56(21): 210101.

参考文献

[1] 徐晓帆, 陆洲. 星地激光通信可靠性保障技术研究现状[J]. 中国电子科学研究院学报, 2018, 13(6): 650-657.

    Xu X F, Lu Z. Research status of mitigation techniques to assure the reliability of satellite-to-ground laser communications[J]. Journal of China Academy of Electronics and Information Technology, 2018, 13(6): 650-657.

[2] 孔英秀, 柯熙政, 杨媛. 激光器线宽对空间相干光通信链路传输误码率研究[J]. 激光与光电子学进展, 2018, 55(4): 040603.

    Kong Y X, Ke X Z, Yang Y. Bit error rate of laser linewidth in spatial coherent optical communication link[J]. Laser & Optoelectronics Progress, 2018, 55(4): 040603.

[3] Viswanath A, Jain V K, Kar S. Aperture averaging and receiver diversity for FSO downlink in presence of atmospheric turbulence and weather conditions for OOK, M-PPM and M-DPPM schemes[J]. Optical and Quantum Electronics, 2016, 48: 435.

[4] Shrestha A, Giggenbach D, Mustafa A, et al. Fading testbed for free-space optical communications[J]. Proceedings of SPIE, 2016, 9991: 999105.

[5] Geisler D J, Yarnall T M, Stevens M L, et al. Multi-aperture digital coherent combining for free-space optical communication receivers[J]. Optics Express, 2016, 24(12): 12661-12671.

[6] Ma J, Li K N, Tan L Y, et al. Exact error rate analysis of free-space optical communications with spatial diversity over Gamma-Gamma atmospheric turbulence[J]. Journal of Modern Optics, 2016, 63(3): 252-260.

[7] Viswanath A, Jain V K, Kar S. Reduction in transmitter power requirement for earth-to-satellite and satellite-to-earth free space optical links with spatial diversity[J]. Optical and Quantum Electronics, 2018, 50: 418.

[8] Odeyemi K O, Owolawi P A, Srivastava V M. Performance analysis of free space optical system with spatial modulation and diversity combiners over the Gamma Gamma atmospheric turbulence[J]. Optics Communications, 2017, 382: 205-211.

[9] Ma J, Li K N, Tan L Y, et al. Performance analysis of satellite-to-ground downlink coherent optical communications with spatial diversity over Gamma-Gamma atmospheric turbulence[J]. Applied Optics, 2015, 54(25): 7575-7585.

[10] Belmonte A, Kahn J M. Capacity of coherent free-space optical links using diversity-combining techniques: errata[J]. Optics Express, 2010, 18(17): 17748.

[11] Niu M B, Cheng J L, Holzman J F. Exact error rate analysis of equal gain and selection diversity for coherent free-space optical systems on strong turbulence channels[J]. Optics Express, 2010, 18(13): 13915-13926.

[12] ViswanathA, Jain VK, KarS. Performance evaluation of satellite-to-earth FSO link in presence of turbulence and weather conditions for different IM schemes[C]∥2016 Twenty Second National Conference on Communication (NCC), March 4-6, 2016, Guwahati, India. New York: IEEE, 2016: 16285519.

[13] Niu M B, Cheng J L, Holzman J F. Error rate performance comparison of coherent and subcarrier intensity modulated optical wireless communications[J]. Journal of Optical Communications and Networking, 2013, 5(6): 554-564.

[14] Al-Habash M A, Andrews L C, Phillips R L. Mathematical model for the irradiance probability density function of a laser beam propagating through turbulent media[J]. Optical Engineering, 2001, 40(8): 1554-1562.

[15] Andrews L C, Young C Y. Al-HabashM A, et al. Fade statistics associated with a space/ground laser communication link at large zenith angles[J]. Proceedings of SPIE, 1999, 3763: 268-277.

[16] 孙晶, 黄普明, 幺周石. Gamma-Gamma大气湍流下相干光通信分集接收技术研究[J]. 光学学报, 2018, 38(7): 0706002.

    Sun J, Huang P M, Yao Z S. Diversity reception technology in coherent optical communication over Gamma-Gamma atmospheric turbulence channel[J]. Acta Optica Sinica, 2018, 38(7): 0706002.

[17] Andrews LC, Phillips RL. Laser beam propagation through random media[M]. 2nd ed. Washington: SPIE Press, 2005.

[18] 赵静, 赵尚弘, 赵卫虎, 等. 大气湍流和指向误差下混合RF/FSO航空通信系统性能分析[J]. 中国激光, 2017, 44(9): 0906001.

    Zhao J, Zhao S H, Zhao W H, et al. Performance analysis for mixed RF/FSO airborne communication systems over atmospheric turbulence and pointing error[J]. Chinese Journal of Lasers, 2017, 44(9): 0906001.

[19] GhassemlooyZ, PopoolaW, RajbhandariS. Optical wireless communications: system and channel modelling with MATLAB[M]. New York: CRC Press, 2012.

[20] Kim I I. McArthur B, Korevaar E J. Comparison of laser beam propagation at 785 nm and 1550 nm in fog and haze for optical wireless communications[J]. Proceedings of SPIE, 2001, 4214: 26-37.

[21] 谷康, 徐智勇, 汪井源, 等. 大气湍流条件下长波红外无线激光通信性能分析[J]. 激光与光电子学进展, 2017, 54(3): 030603.

    Gu K, Xu Z Y, Wang J Y, et al. Long-wave infrared wireless laser communication performance under atmospheric turbulence conditions[J]. Laser & Optoelectronics Progress, 2017, 54(3): 030603.

[22] Niu MB, Cheng JL, Holzman JF, et al. Coherent free-space optical transmission with diversity combining for Gamma-Gamma atmospheric turbulence[C]∥2010 25th Biennial Symposium on Communications, May 12-14, 2010, Kingston, ON, Canada. New York: IEEE, 2010: 217- 220.

张晓玉, 崔晟, 刘德明, 江阳. 星地下行链路中多孔径相干光接收机性能分析[J]. 激光与光电子学进展, 2019, 56(21): 210101. Xiaoyu Zhang, Sheng Cui, Deming Liu, Yang Jiang. Performance Analysis of Multi-Aperture Coherent Optical Receiver for Satellite-to-Ground Downlink[J]. Laser & Optoelectronics Progress, 2019, 56(21): 210101.

本文已被 6 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!