Frontiers of Optoelectronics, 2019, 12 (2): 215–226, 网络出版: 2019-11-14  

Reflectometric and interferometric fiber optic sensor’s principles and applications

Reflectometric and interferometric fiber optic sensor’s principles and applications
作者单位
School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China
摘要
Abstract
Fiber optic sensors have been widely used and studied in recent times. This paper presents operating principles and applications of fiber optic sensors namely reflectometric and interferometric fiber optic sensors. Majority of optical fiber sensors fall under these two broad categories. Both interferometric and reflectometric fiber optic sensors are becoming popular for their ease of use, flexibility, long distance sensing, and potentially noise free detection. Also, these sensors can easily be used in various applications such as structural health monitoring, perimeter intrusion detection, temperature monitoring, and other numerous applications. This paper broadly classifies fiber optic sensors into two subtypes. The paper further highlights different sensors based on their sensing resolution, range, spatial advantages, and applications.
参考文献

[1] Bévenot X, Trouillet A, Veillas C, Gagnaire H, Clément M. Hydrogen leak detection using an optical fibre sensor for aerospace applications. Sensors and Actuators. B, Chemical, 2000, 67(1–2): 57–67

[2] Kwon I B, Baik S J, Im K, Yu J W. Development of fiber optic BOTDA sensor for intrusion detection. Sensors and Actuators A, Physical, 2002, 101(1-2): 77–84

[3] Guo H, Xiao G, Mrad N, Yao J. Fiber optic sensors for structural health monitoring of air platforms. Sensors (Basel), 2011, 11(4): 3687–3705

[4] Gaillorenzi T G. Optical fiber sensor technology. IEEE Journal of Quantum Electronics, 1982, 8: 626–660

[5] Spooncer R C. Fiber optics in instrumentation. In: Sydenham P H, Thorn R, eds. Handbook of Measurement Science. Chichester: Wiley, 1992

[6] Udd E. Fiber Optic Sensors. New York: Wiley, 1991 7. Marcuse D. Principle of Optical Fiber Measurements. New York: Academic Press, 1981, Chap. 5

[7] Barnoski MK, Jensen SM. Fiber waveguides: a novel technique for investigating attenuation characteristics. Applied Optics, 1976, 15(9): 2112–2115

[8] Shi B, Sui H, Liu J, Zhang D. The BOTDR based distribution monitoring system for slope engineering. In: Culshaw M G, Reeves H J, Jefferson I, Spink T W, eds. Engineering Geology for Tomorrow’s cities. London: Geological Society, 2009

[9] Yasue N, Naruse H, Masuda J, Kino H, Nakamura T,Yamaura R. Concrete pipeline strain measurement using optical fiber sensor. IEICE Transactions on Electronics, 2000, 83(3): 468–474.

[10] Kurashima T, Horiguchi T, Izumita H, Furukawa S I, Koyamada Y, Brillouin optical-fiber time domain reflectometry. IEICE Transactions on Communications, 1993. E76-B(4), 382–390

[11] Park J, Lee W, Taylor H F. A fiber optic intrusion sensor with the configuration of an optical time domain reflectometer using coherent interference of Rayleigh backscattering. Proceedings of the Society for Photo-Instrumentation Engineers, 1998, 3555: 49–56

[12] Wu H J,Wang Z N, Peng F, Peng Z P, Li X Y,Wu Y, Rao Y J. Field test of a fully distributed fiber-optic intrusion detection system for long-distance security monitoring of national borderline. In: Proceedings of 23rd International Conference on Optical Fibre Sensors, Santander, Spain, 2014

[13] Juarez J C, Maier EW, Choi K N, Taylor H F. Distributed fiber-optic intrusion sensor system. Journal of Lightwave Technology, 2005, 23(6): 2081–2087

[14] Thévenaz L. Review and progress on distributed fiber sensing. In: Optical Fiber Sensors. OSA Technical Digest (Optical Society of America), Cancun Mexico, 2006, ThC1

[15] Zhu T, He Q, Xiao X, Bao X. Modulated pulses based distributed vibration sensing with high frequency response and spatial resolution. Optics Express, 2013, 21(3): 2953–2963

[16] Martins H F, Martin-Lopez S, Corredera P, Salgado P, Frazao O, Gonzalez-Herraez M. Modulation instability-induced fading in phase-sensitive optical time-domain reflectometry. Optics Letters, 2013, 38(6): 872–874

[17] Wu H, Wang Z, Peng F, Peng Z, Li X, Wu Y, Rao Y. Field test of a fully-distributed fiber-optic intrusion detection system for longdistance security monitoring of national borderline. Proceedings of the Society for Photo-Instrumentation Engineers, 2014, 9157: 915790–915791

[18] Duan N, Peng F, Rao Y, Du J, Lin Y. Field test for real-time position and speed monitoring of trains using phase-sensitive optical time domain reflectometry (F-OTDR). Proceedings of the Society for Photo-Instrumentation Engineers, 2014, 9157: 1–4

[19] Wang Z N, Zeng J J, Li J, Fan M Q, Wu H, Peng F, Zhang L, Zhou Y, Rao Y J. Ultra-long phase-sensitive OTDR with hybrid distributed amplification. Optics Letters, 2014, 39(20): 5866–5869

[20] Juarez J C, Maier EW, ChoiK N, Taylor H F. Distributed fiber-optic intrusion sensor system. Journal of Lightwave Technology, 2005, 23(6): 2081–2087

[21] Juarez J C, Taylor H F. Field test of a distributed fiber-optic intrusion sensor system for long perimeters. Applied Optics, 2007, 46(11): 1968–1971

[22] Peng F, Cao X. A hybrid phi/B-OTDR for simultaneous vibration and strain measurement. Photonics Sensors, 2016, 6(2): 121–126

[23] Bao X, Chen L. Recent progress in optical fiber sensors based on Brillouin scattering at University of Ottawa. Photonic Sensors, 2011, 1(2): 102–117

[24] Liu X, Wang C, Shang Y, Wang H. Distributed acoustic sensing with Michelson interferometer demodulation. Photonics Sensors, 2017, 7(3): 193–198

[25] Ma J, Yu Y, Jin W. Demodulation of diaphragm based acoustic sensor using Sagnac interferometer with stable phase bias. Optics Express, 2015, 23(22): 29268–29278

[26] Lv F, Han C, Ding H, Wu Z, Li X. Magnetic field sensor based on microfiber Sagnac loop interferometer and ferrofluid. IEEE Photonics Technology Letters, 2015, 27(22): 2327–2330

[27] Wada K, Narui H, Yamamoto D, Matsuyama T, Horinaka H. Balanced polarization maintaining fiber Sagnac interferometer vibration sensor. Optics Express, 2011, 19(22): 21467–21474

[28] Post E J. Sagnac effect. Reviews of Modern Physics, 1967, 39(2): 475–493

[29] Arditty H J, Leèfovre H C. Sagnac effect in fiber gyroscopes. Optics Letters, 1981, 6(8): 401–403

[30] Kersey A D, Dandridge A, Burns W K. Two-wavelength fibre gyroscope with wide dynamic range. Electronics Letters, 1986, 22(18): 935–937

[31] Kim B Y, Lefevre H C. Harmonic feedback approach to fiber optic gyro scale factor stabilization. In: Proceedings of IEEE Conference on Optical Fiber Sensors, 1983, 136

[32] Aronowitz F. The Laser Gyro. In: Ross M, ed. Laser Applications. New York: Academic Press,113–200

[33] Chow W W, Gea-Banacloche J, Pedrotti L M, Sanders V E, Schleich W, Scully M O. The ring laser gyro. Reviews of Modern Physics, 1985, 57(1): 61–104

[34] Ezekiel S, Arditty H J, eds. Fiber-Optic Rotation Sensors, Springer Series in Optical Sciences, vol. 32. New York: Springer-Verlag, 1982

[35] Cahill R F, Udd E. Phase-nulling fiber-optic laser gyro. Optics Letters, 1979, 4(3): 93–95

[36] Koo K P, Sigel G H. A fiber optic magnetic gradiometer. Journal of Lightwave Technology, 1983, 1(3): 509–513

[37] Tveten A B, Dandridge A, Davis C M, Giallorenzi T G. Fiber optic accelerometer. Electronics Letters, 1980, 16(22): 854

[38] Ding X Z, Yang H Z, Qiao X G, Zhang P, Tian O, Rong Q Z, Nazal N A M, Lim K S, Ahmad H. Mach-Zehnder interferometric magnetic field sensor based on a photonic crystal fiber and magnetic fluid. Applied Optics, 2018, 57(9): 2050–2056

[39] Miller M C. Gravitational waves: dawn of a new astronomy. Nature, 2016, 531(7592): 40–42

[40] Riederer S J. Current technical development of magnetic resonance imaging. IEEE Engineering in Medicine and Biology Magazine, 2000, 19(5): 34–41

[41] Fujimoto J G, Pitris C, Boppart S A, Brezinski M E. Optical coherence tomography: an emerging technology for biomedical imaging and optical biopsy. Neoplasia, 2000, 2(1): 9–25

[42] Maciel M J, Costa C G, Silva M F, Peixoto A C, Wolffenbuttel R F, Correia J H. A wafer-level miniaturized Michelson interferometer on glass substrate for optical coherence tomography applications. Sensors and Actuators A, Physical, 2016, 242: 210–216

[43] Imai M, Ohashi T, Ohashi Y. Fiber-optic michelson interference using an optical power divider. Optics letters, 1980, 5(10): 418–420

[44] Bucaro J A, Dardy H D, Carome E F. Fiber-optic hydrophone. Journal of the Acoustical Society of America, 1977, 62(5): 1302–1304

[45] Corke M, Kersey A D, Jackson D A, Jones J D C. All fibre Michelson thermometer. Electronics Letters, 1983, 19(13): 471

[46] Zhao N, Fu H, Shao M, Yan X, Li H, Liu Q, Gao H, Liu Y, Qiao X. High temperature probe sensor with high sensitivity based on Michelson interferometer. Optics Communications, 2015, 343: 131–134

[47] Petuchowski S, Giallorenzi T, Sheem S. A sensitive fiber-optic fabry-perot interferometer. IEEE Journal of Quantum Electronics, 1981, 17(11): 2168–2170

[48] Stone J. Optical-fibre fabry-perot interferometer with finesse of 300. Electronics Letters, 1985, 21(11): 504–505

[49] Xia W, Li C, Hao H, Wang Y, Ni X, Guo D, Wang M. Highaccuracy vibration sensor based on a Fabry-Perot interferometer with active phase-tracking technology. Applied Optics, 2018, 57(4): 659–665

[50] Zhang Q, Zhu T, Hou Y, Chiang K. All-fiber vibration sensor based on a Fabry Perot interferometer and a microstructure beam. Journal of the Optical Society of America B, Optical Physics, 2013, 30(5): 1211–1215

[51] Bucaro J A, Dardy H D, Carome E. Fiber optic hydrophone. Journal of the Acoustical Society of America, 1977, 62(5): 1302–1304

[52] Dandridge A, Tveten A B, Sigel G H, West E J, Giallorenzi T G. Optical fiber magnetic field sensor. Electronics Letters, 1980, 16(11): 408

[53] Koo K P, Sigel G H. An electric field sensor utilizing a piezoelectric PVF2 film in a single-mode fiber interferometer. IEEE Journal of Quantum Electronics, 1982, 18(4): 670–675

[54] Dandridge A, Tveten A B, Giallorenzi T G. Interferometric current sensor using optical fibres. Electronics Letters, 1981, 17(15): 523–525

[55] Bucaro J A, Lagakos N, Cole J H,Giallorenzi T G. Fiber optic acoustic transduction. Physical Acoustics, 1982, 16(C): 385–457

[56] Wade C A, Dandrige A. Fibre-optic coriolis mass flowmeter for liquids. Electronics Letters, 1988, 24(13): 783–785

[57] Kurashima T, Horiguchi T, Yoshizawa N, Tada H, Tateda M. Measurement of distributed strain due to laying and recovery of submarine optical fiber cable. Applied Optics, 1991, 30(3): 334–337

[58] Kurashima T, Hogari K, Matsuhashi S, Horiguchi T, Koyamada Y, Wakui Y, Hirano H. Measurement of distributed strain in frozen cables and its potential for use in predicting cable failure. In: Proceedings of International Wire & Cable Symposium Proceedings, 1994, 593602

[59] Thevenaz L. Monitoring of large structure using distributed Brillouin fiber sensing. In: Proceedings of 13th International Conference on Optical Fiber Sensors, Korea, 1999, 345–348

[60] Ohno H, Naruse H, Kihara M, Shimada A. Industrial applications of the BOTDR optical fiber strain sensor. Optical Fiber Technology, 2001, 7(1): 45–64

[61] Wu H, Wang Z, Peng F, Peng Z, Li X, Wu Y, Rao Y. Field test of a fully-distributed fiber-optic intrusion detection system for longdistance security monitoring of national borderline. Proceedings of the Society for Photo-Instrumentation Engineers, 2014, 9157: 915790–915791

[62] Duan N, Peng F, Rao Y, Du J, Lin Y. Field test for real-time position and speed monitoring of trains using phase-sensitive optical time domain reflectometry (F-OTDR). Proceedings of the Society for Photo-Instrumentation Engineers, 2014, 9157: 1–4

[63] Peng F, Wu H, Jia X H, Rao Y J, Wang Z N, Peng Z P. Ultra-long high-sensitivity F-OTDR for high spatial resolution intrusion detection of pipelines. Optics Express, 2014, 22(11): 13804–13810

[64] Tejedor J, Martins H F, Piote D, Macias-Guarasa J, Pastor-Graells J, Martin-Lopez S, Guillén P C, De Smet F, Postvoll W, Gonzalez-Herraez M. Toward prevention of pipeline integrity threats using a smart fiber-optic surveillance system. Journal of Lightwave Technology, 2016, 34(19): 4445–4453

[65] Sun Q, Feng H, Yan X, Zeng Z. Recognition of a phase-sensitivity OTDR sensing system based on morphologic feature extraction. Sensors (Basel), 2015, 15(7): 15179–15197

[66] Peng F, Duan N, Rao Y, Li J. Real-time position and speed monitoring of trains using phase-sensitive OTDR. IEEE Photonics Technology Letters, 2014, 26(20): 2055–2057

[67] Bradley D J, Bates B, Juulman C O L, Kohno T. Recent developments in the application of the fabry-perot interferometer to space research. Journal de Physique Colloques, 1967, 28 (C2): 280–286

[68] Mehra R, Shahani H, Khan A. Mach Zehnder Interferometer and its Applications. IJCA Proceedings on National Seminar on Recent Advances in Wireless Networks and Communications, 2014, NWNC (1): 31–36

[69] Van-Pham D, Nguyen M, Nakanishi H, Norisuye T, Tran-Cong- Miyata Q. Applications of Mach-Zehnder interferometry to studies on local deformation of polymers under photocuring. In: Banishev A, Wang J, Bhowmick, eds. Optical Interferometry. London: IntechOpen, 2017, 25–39

[70] Markovich R J, Pidgeon C. Introduction to Fourier transform infrared spectroscopy and applications in the pharmaceutical sciences. Pharmaceutical Research, 1991, 8(6): 663–675

, , . Reflectometric and interferometric fiber optic sensor’s principles and applications[J]. Frontiers of Optoelectronics, 2019, 12(2): 215–226. Muhammad Noaman, Jianliang JIANG, Saad RIZVI. Reflectometric and interferometric fiber optic sensor’s principles and applications[J]. Frontiers of Optoelectronics, 2019, 12(2): 215–226.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!