Opto-Electronic Advances, 2018, 1 (6): 180010, Published Online: Mar. 19, 2019  

Mode evolution and nanofocusing of grating-coupled surface plasmon polaritons on metallic tip

Author Affiliations
1 MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions and Shaanxi Key Laboratory of Optical Information Technology, School of Science, Northwestern Polytechnical University, Xi'an 710072, China
2 Key Laboratory of Optoelectronic Technology and Systems (Ministry of Education), Chongqing University, Chongqing 400044, China
3 MOE Key Laboratory of Weak-Light Nonlinear Photonics, TEDA Applied Physics Institute and School of Physics, Nankai University, Tianjin 300457, China
Copy Citation Text

Fanfan Lu, Wending Zhang, Ligang Huang, Shuhai Liang, Dong Mao, Feng Gao, Ting Mei, Jianlin Zhao. Mode evolution and nanofocusing of grating-coupled surface plasmon polaritons on metallic tip[J]. Opto-Electronic Advances, 2018, 1(6): 180010.

References

[1] D K Gramotnev, S I Bozhevolnyi. Nanofocusing of electromagnetic radiation. Nat Photonics, 2013, 8: 13-22.

[2] R M Stöckle, Y D Suh, V Deckert, R Zenobi. Nanoscale chemical analysis by tip-enhanced Raman spectroscopy. Chem Phys Lett, 2000, 318: 131-136.

[3] S Jiang, Y Zhang, R Zhang, C R Hu, M H Liao, et al.. Distinguishing adjacent molecules on a surface using plasmon-enhanced Raman scattering. Nat Nanotechnol, 2015, 10: 865-869.

[4] J H Zhong, X Jin, L Y Meng, X Wang, H S Su, et al.. Probing the electronic and catalytic properties of a bimetallic surface with 3 nm resolution. Nat Nanotechnol, 2017, 12: 132-136.

[5] J F Li, Y F Huang, Y Ding, Z L Yang, S B Li, et al.. Shell-isolated nanoparticle-enhanced Raman spectroscopy. Nature, 2010, 464: 392-395.

[6] W D Zhang, C Li, K Gao, F F Lu, M Liu, et al.. Surface-enhanced Raman spectroscopy with Au-nanoparticle substrate fabricated by using femtosecond pulse. Nanotechnology, 2018, 29: 205301.

[7] H Wei, F Hao, Y Z Huang, W Z Wang, P Nordlander, et al.. Polarization dependence of surface-enhanced Raman scattering in gold nanoparticle-nanowire systems. Nano Lett, 2008, 8: 2497-2502.

[8] K C Xu, Z Y Wang, C F Tan, N Kang, L W Chen, et al.. Uniaxially stretched flexible surface Plasmon resonance film for versatile surface enhanced Raman scattering diagnostics. ACS Appl Mater Interfaces, 2017, 9: 26341-26349.

[9] C C Neacsu, G A Reider, M B Raschke. Second-harmonic generation from nanoscopic metal tips: symmetry selection rules for single asymmetric nanostructures. Phys Rev B, 2005, 71: 201402.

[10] M Kauranen, A V Zayats. Nonlinear plasmonics. Nat Photonics, 2012, 6: 737-748.

[11] Y J Jin, L W Chen, M X Wu, X Z Lu, R Zhou, et al.. Enhanced saturable absorption of the graphene oxide film via photonic nanojets. Opt Mater Express, 2016, 6: 1114-1121.

[12] L W Chen, X R Zheng, Z R Du, B H Jia, M Gu, et al.. A frozen matrix hybrid optical nonlinear system enhanced by a particle lens. Nanoscale, 2015, 7: 14982-14988.

[13] Z R Du, L W Chen, T S Kao, M X Wu, M H Hong. Improved optical limiting performance of laser-ablation-generated metal nanoparticles due to silica-microsphere-induced local field enhancement. Beilstein J Nanotechnol, 2015, 6: 1199-1204.

[14] C Chen, N Hayazawa, S Kawata. A 1.7 nm resolution chemical analysis of carbon nanotubes by tip-enhanced Raman imaging in the ambient. Nat Commun, 2014, 5: 3312.

[15] R Zhang, Y Zhang, Z C Dong, S Jiang, C Zhang, et al.. Chemical mapping of a single molecule by plasmon-enhanced Raman scattering. Nature, 2013, 498: 82-86.

[16] K V Nerkararyan. Superfocusing of a surface polariton in a wedge-like structure. Phys Lett A, 1997, 237: 103-105.

[17] N C Lindquist, P Nagpal, A Lesuffleur, D J Norris, S H Oh. Three-dimensional plasmonic nanofocusing. Nano Lett, 2010, 10: 1369-1373.

[18] V S Volkov, S I Bozhevolnyi, S G Rodrigo, L Martín-Moreno, F J García-Vidal, et al.. Nanofocusing with channel plasmon polaritons. Nano Lett, 2009, 9: 1278-1282.

[19] A I Fernández-Domínguez, S A Maier, J B Pendry. Collection and concentration of light by touching spheres: a transformation optics approach. Phys Rev Lett, 2010, 105: 266807.

[20] E Verhagen, A Polman, L K Kuipers. Nanofocusing in laterally tapered plasmonic waveguides. Opt Express, 2008, 16: 45-57.

[21] B N Tugchin, N Janunts, A E Klein, M Steinert, S Fasold, et al.. Plasmonic tip based on excitation of radially polarized conical surface plasmon polariton for detecting longitudinal and transversal fields. ACS Photonics, 2015, 2: 1468-1475.

[22] J Stadler, T Schmid, R Zenobi. Developments in and practical guidelines for tip-enhanced Raman spectroscopy. Nanoscale, 2012, 4: 1856-1870.

[23] T X Huang, S C Huang, M H Li, Z C Zeng, X Wang, et al.. Tip-enhanced Raman spectroscopy: tip-related issues. Anal Bioanal Chem, 2015, 407: 8177-8195.

[24] P Verma. Tip-enhanced Raman spectroscopy: technique and recent advances. Chem Rev, 2017, 117: 6447-6466.

[25] C Ropers, C C Neacsu, T Elsaesser, M Albrecht, M B Raschke, et al.. Grating-coupling of surface plasmons onto metallic tips: a nanoconfined light source. Nano Lett, 2007, 7: 2784-2788.

[26] C C Neacsu, S Berweger, R L Olmon, L V Saraf, C Ropers, et al.. Near-field localization in plasmonic superfocusing: a nanoemitter on a tip. Nano Lett, 2010, 10: 592-596.

[27] S Berweger, J M Atkin, R L Olmon, M B Raschke. Light on the tip of a needle: plasmonic nanofocusing for spectroscopy on the nanoscale. J Phys Chem Lett, 2012, 3: 945-952.

[28] T Xu, C T Wang, C L Du, X G Luo. Plasmonic beam deflector. Opt Express, 2008, 16: 4753-4759.

[29] T Xu, C L Du, C T Wang, X G Luo. Subwavelength imaging by metallic slab lens with nanoslits. Appl Phys Lett, 2007, 91: 201501.

[30] X G Luo, T Ishihara. Surface plasmon resonant interference nanolithography technique. Appl Phys Lett, 2004, 84: 4780.

[31] D Sadiq, J Shirdel, J S Lee, E Selishcheva, N Park, et al.. Adiabatic nanofocusing scattering-type optical nanoscopy of individual gold nanoparticles. Nano Lett, 2011, 11: 1609-1613.

[32] M Müller, V Kravtsov, A Paarmann, M B Raschke, R Ernstorfer. Nanofocused Plasmon-driven sub-10 fs electron point source. ACS Photonics, 2016, 3: 611-619.

[33] S Schmidt, B Piglosiewicz, D Sadiq, J Shirdel, J S Lee, et al.. Adiabatic nanofocusing on ultrasmooth single-crystalline gold tapers creates a 10-nm-sized light source with few-cycle time resolution. ACS Nano, 2012, 6: 6040-6048.

[34] S Berweger, J M Atkin, R L Olmon, M B Raschke. Adiabatic Tip-Plasmon focusing for Nano-Raman spectroscopy. J Phys Chem Lett, 2010, 1: 3427-3432.

[35] V Kravtsov, J M Atkin, M B Raschke. Group delay and dispersion in adiabatic plasmonic nanofocusing. Opt Lett, 2013, 38: 1322-1324.

[36] M Esmann, S F Becker, B B da Cunha, J H Brauer, R Vogelgesang, et al.. k-space imaging of the eigenmodes of sharp gold tapers for scanning near-field optical microscopy. Beilstein J Nanotechnol, 2013, 4: 603-610.

[37] J Mihaljevic, C Hafner, A J Meixner. Grating enhanced apertureless near-field optical microscopy. Opt Express, 2015, 23: 18401-18414.

[38] J S Lee, S Han, J Shirdel, S Koo, D Sadiq, et al.. Superfocusing of electric or magnetic fields using conical metal tips: effect of mode symmetry on the plasmon excitation method. Opt Express, 2011, 19: 12342-12347.

[39] P Andrey. Nanofocusing of surface Plasmons at the apex of metallic probe tips. J Nanoelectron Optoe, 2010, 5: 310-314.

[40] P B Johnson, R W Christy. Optical constants of the noble metals. Phys Rev B, 1972, 6: 4370-4379.

[41] PalikE DHandbook of Optical Constants of Solids (Academic, San Diego, America, 1998)

[42] M I Stockman. Nanofocusing of optical energy in tapered plasmonic waveguides. Phys Rev Lett, 2004, 93: 137404.

[43] Z Y Fang, C F Lin, R M Ma, S Huang, X Zhu. Planar plasmonic focusing and optical transport using CdS nanoribbon. ACS Nano, 2010, 4: 75-82.

[44] Z Y Fang, L R Fan, C F Lin, D Zhang, A J Meixner, et al.. Plasmonic coupling of bow tie antennas with Ag nanowire. Nano Lett, 2011, 11: 1676-1680.

[45] V S Gurevich, M N Libenson. Surface polaritons propagation along micropipettes. Ultramicroscopy, 1995, 57: 277-281.

[46] A J Babadjanyan, N L Margaryan, K V Nerkararyan. Superfocusing of surface polaritons in the conical structure. J Appl Phys, 2000, 87: 3785.

[47] W D Zhang, L G Huang, K Y Wei, P Li, B Q Jiang, et al.. Cylindrical vector beam generation in fiber with mode selectivity and wavelength tunability over broadband by acoustic flexural wave. Opt Express, 2016, 24: 10376-10384.

[48] L Novotny, C Hafner. Light propagation in a cylindrical waveguide with a complex, metallic, dielectric function. Phys Rev E, 1994, 50: 4094-4106.

[49] D K Gramotnev, M W Vogel, M I Stockman. Optimized nonadiabatic nanofocusing of plasmons by tapered metal rods. J Appl Phys, 2008, 104: 034311.

[50] N A Issa, R Guckenberger. Optical nanofocusing on tapered metallic waveguides. Plasmonics, 2007, 2: 31-37.

Fanfan Lu, Wending Zhang, Ligang Huang, Shuhai Liang, Dong Mao, Feng Gao, Ting Mei, Jianlin Zhao. Mode evolution and nanofocusing of grating-coupled surface plasmon polaritons on metallic tip[J]. Opto-Electronic Advances, 2018, 1(6): 180010.

引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!