红外与激光工程, 2017, 46 (7): 0718006, 网络出版: 2017-09-21   

近红外大数值孔径平场显微物镜设计

Design of high NA flat-field microscope objective for near infrared
作者单位
北京理工大学 光电学院 光电成像技术与系统教育部重点实验室, 北京 100081
摘要
为满足飞秒激光微纳加工系统对高加工精度和大加工范围的需求, 首先确定了该系统的重要组成部分-无限共轭距显微物镜所需具备的特性及设计指标。依据薄透镜组的初级像差理论, 针对飞秒激光波长推导出光学系统为校正匹兹凡场曲和二级光谱所需满足的条件。该镜头由11片球面透镜构成, 所选用材料皆为国产玻璃, 同时避免三胶合结构的使用。设计了一套工作波长为785~815 nm, 数值孔径为0.9, 像方视场为22.5 mm, 放大倍率为40×的近红外平场复消色差显微物镜。设计结果表明: 该镜头的MTF良好, 全视场波像差均小于0.08λ, 各种几何像差均远小于公差且满足平场和复消色差条件, 能量集中度高。使用补偿器放松材料公差、加工公差和装调公差, 公差分配后全视场RMS波像差小于0.09λ, 满足实际应用要求。
Abstract
To meet the requirements of femtosecond laser micro-nanofabrication systems for high precision and wide region, the features and design specifications of infinity microscope objectives which were important components of the systems were determined. Based on the theory of primary aberration of thin lens system, the conditions to meet were concluded to correct Petzval curvature and second order spectrum for femtosecond wavelength. The objective consisted of 11 spherical lens, and all materials were glass made in China, and the use of cemented lens composed of three lens was avoided. A near infrared flat-field microscope objective, whose working wavelength was 785-815 nm, numerical aperture was 0.9, field of view in image space was 22.5 mm, magnification was 40×, was designed. Designing results show that the objective has excellent MTF, RMS wavefront errors of all fields are less than 0.08λ, and various geometrical aberrations are deeply under tolerances, the results meet the conditions of flat field and apochromatism, and energy concentration is high. Compensators are used to slacken material tolerance, manufacturing tolerances and alignment tolerances. RMS wavefront errors of all fields get less than 0.09λ after tolerances attribution and the objective can be applied actually.
参考文献

[1] Kawata S, Sun H B, Tanaka T, et al. Finer features for functional microdevices-micromachines can be created with higher resolution using two-photon absorption[J]. Nature,2001, 412(6848): 697-698.

[2] 董贤子, 陈卫强, 赵振声, 等. 飞秒脉冲激光双光子微纳加工技术及其应用[J]. 科学通报, 2008, 53(1): 2-13.

    Dong Xianzi, Chen Weiqiang, Zhao Zhensheng, et al. Femtosecond pulse laser two-photon micro-nanofabrication technology and application[J]. Chinese Science Bulletin, 2008, 53(1): 2-13. (in Chinese)

[3] 李岩. 飞秒激光微纳加工制备研究[D].长春:吉林大学, 2010.

    Li Yan. The research of femtosecond laser micro- nanofabrication[D]. Changchun: Jilin University, 2010. (in Chinese)

[4] 匡裕光. 平象场复消色差大视场显微物镜光学设计[J]. 光学学报, 1994, 14(5): 558-560.

    Kuang Yuguang. Lens design of the flat field, apochromatic CF microscopic objective[J]. Acta Optica Sinica, 1994, 14(5): 558-560. (in Chinese)

[5] 陈姣, 焦明印, 常伟军, 等. 近紫外-可见光宽波段复消色差显微物镜设计[J]. 应用光学, 2011, 32(6): 1098-1102.

    Chen Jiao, Jiao Mingyin, Chang Weijun, et al. Optical design of apochromatic microscope objective for near ultraviolet-visible wide spectrum[J]. Journal of Applied Optics, 2011, 32(6): 1098-1102. (in Chinese)

[6] 薛金来, 巩岩, 李佃蒙. N.A. 0.75 平场复消色差显微物镜光学设计[J]. 中国光学, 2015, 8(6): 957-963.

    Xue Jinlai, Gong Yan, Li Dianmeng. Optical design of the N.A. 0.75 plan-apochromatic microscope objective[J]. Chinese Optics, 2015, 8(6): 957-963. (in Chinese)

[7] Miks A, Novak J. Method for primary design of superachromats[J]. Applied Optics, 2013, 52(28): 6668-6876.

[8] 刘乾, 杨维川, 袁道成, 等. 光谱共焦显微镜的线性色散物镜设计[J]. 光学 精密工程, 2013, 21(10): 2473-2479.

    Liu Qian, Yang Weichuan, Yuan Daocheng, et al. Design of linear dispersive objective for chromatic confocal microscope[J]. Opt Precision Eng, 2013, 21(10): 2473-2479. (in Chinese)

[9] 孟庆宇, 董吉洪, 王栋, 等.轻小型立体相机光学系统研制[J]. 红外与激光工程, 2016, 45(4): 0418002.

    Meng Qingyu, Dong Jihong, Wang Dong, et al. Minitype optical system development of stereo camera[J]. Infrared and Laser Engineering, 2016, 45(4): 0418002. (in Chinese)

[10] 李林. 应用光学[M]. 北京: 北京理工大学出版社, 2010.

    Li Lin. Applied Optics[M]. Beijing: Beijing Institute of Technology Press, 2010. (in Chinese)

[11] 王之江. 实用光学技术手册[M].北京: 机械工业出版社, 2007.

    Wang Zhijiang. Handbook of Practical Optical Technology[M]. Beijing: China Machine Press, 2007. (in Chinese)

[12] 崔桂华. 平场复消色差显微物镜设计和光学公差计算[D]. 北京: 北京理工大学, 1987.

    Cui Guihua. Design of plan field, apochromatic microscope objective and optical tolerances computation[D]. Beijing: Beijing Institute of Technology, 1987. (in Chinese)

[13] 李林. 现代光学设计方法[M]. 北京: 北京理工大学出版社, 2009.

    Li Lin. Modern Optical Design[M]. Beijing: Beijing Institute of Technology Press, 2009. (in Chinese)

[14] 张以谟. 应用光学[M]. 北京: 电子工业出版社, 2015.

    Zhang Yimo. Applied Optics[M]. Beijing: Publishing House of Electronics Industry, 2015. (in Chinese)

[15] 袁旭沧. 光学设计[M]. 北京: 北京理工大学出版社, 1988.

    Yuan Xucang. Optical Design[M]. Beijing: Beijing Institute of Technology Press, 1988. (in Chinese)

[16] 李士贤, 李林. 光学设计手册[M].北京: 北京理工大学出版社, 1996.

    Li Shixian, Li Lin. Handbook of Optical Design[M]. Beijing: Beijing Institute of Technology Press, 1996. (in Chinese)

[17] International standard ISO 19012-1-2013, Microscopes-Designation of microscope objectives [S]. 2013.

[18] 许伟才. 投影光刻物镜的光学设计与像质补偿[D]. 长春: 中国科学院长春光学精密机械与物理研究所, 2011.

    Xu Weicai. Optical design and imaging performance compensation for the lithographic lens[D]. Changchun: Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 2011. (in Chinese)

[19] 符媛英, 李艳秋, 刘晓林, 等. 投影光刻物镜波像差的公差分析方法[J]. 光学技术, 2014, 40(4): 289-294.

    Fu Yuanying, Li Yanqiu, Liu Xiaolin, et al. A method of tolerance analysis for wavefront error of lithographic projection lens[J]. Optical Technique, 2014, 40(4): 289-294. (in Chinese)

[20] 郭夏锐,王春雨, 廖志波, 等. 高精度透射式空间光学系统装调误差分析与动态控制[J]. 红外与激光工程, 2012, 41(4): 947-951.

    Guo Xiarui, Wang Chunyu, Liao Zhibo, et al. Misalignment and assemblage stress analysis in space transmission optical system[J]. Infrared and Laser Engineering, 2012, 41(4), 947-951. (in Chinese)

[21] 栗孟娟, 廖志波, 王春雨. 小口径高精度折射式光学系统装调公差的分析与控制[J]. 应用光学, 2015, 36(2): 277-281.

    Li Mengjuan, Liao Zhibo, Wang Chunyu. Analysis and control on assemblage tolerance in small-aperture high-precision refractive optical system[J]. Journal of Applied Optics, 2015, 36(2): 277-281. (in Chinese)

周恩源, 刘丽辉, 刘岩, 曹振. 近红外大数值孔径平场显微物镜设计[J]. 红外与激光工程, 2017, 46(7): 0718006. Zhou Enyuan, Liu Lihui, Liu Yan, Cao Zhen. Design of high NA flat-field microscope objective for near infrared[J]. Infrared and Laser Engineering, 2017, 46(7): 0718006.

本文已被 3 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!