光学学报, 2016, 36 (6): 0616001, 网络出版: 2016-05-25   

应用于相控阵雷达的光子晶体慢光波导光实时延迟线

Optical True Time-Delay lines of Photonic Crystal Slow Light Waveguides Used in Phased Array Radar
作者单位
1 中国电子科技集团公司第三十八研究所, 安徽 合肥 230088
2 中国科学院合肥物质科学研究院, 安徽 合肥 230031
摘要
光子化研究是相控阵雷达的发展趋势,光子晶体以其优异的集成度及光学特性在相控阵雷达光子化研究中具有广泛的应用前景。基于光子晶体波导慢光特性及热光调制原理,设计了应用于相控阵雷达波束形成网路的光实时延迟线。通过优化光子晶体慢光波导参数,所设计光子晶体光实时延迟线可实现延时量为0~36.69 ps的高精度调谐,得到23 GHz以上的延时带宽。通过优化实时延迟线群速度随温度的色散特性,温度每变化1 ℃,延时量变化量在0.36~1.57 ps/mm范围内。所提出的基于光子晶体波导的光实时延迟线,可实现延时量的高效、高精度调谐,相对于传统电域波束形成网络,具有集成度高、瞬时带宽大、调谐精度高等优点,为高频段宽带相控阵雷达波束形成网络的研发提供了理论基础。
Abstract
The photonizing research is the development trend of phased array radar. Due to its excellent characteristics on the integration level and optical properties, the photonic crystals have extensive application prospect in the photonics research of optical true time-delay lines phased array radar. Based on the slow light characteristics and thermo-optical modulation theory, optical true time-delay lines applied in beam forming network of phased array radar are proposed. By optimizing parameters of the photonic crystal slow waveguide, high accurate modulation of of photonic crystal designed ranging from 0 ps/mm to 36.69 ps/mm is achieved. Meanwhile, the delay bandwidth larger than 23 GHz is realized. By optimizing variation characteristics of the group velocity with temperature, the time delay variation is in the range from 0.36 ps/mm to 1.57 ps/mm whenever the temperature changes 1 ℃. The optical true time-delay lines based on photonic crystal proposed can achieve highly efficient and accurate modulation on the delay. Compared with the traditional electrical domain beam-forming network, it has the advantages of high integration, wide instantaneous bandwidth and high tuning accuracy, which can provide a theoretical basis for the beam-forming network research of the high frequency wideband phased array radar.
参考文献

[1] Yablonovitch E. Inhibited spontaneous emission in solid-state physics and electronics[J]. Phys Rev Lett, 1987, 58(20): 2059-2062.

[2] Sajeev J. Strong localization of photons in certain disordered dielectric superlattices[J]. Phys Rev Lett, 1987, 58(23): 2486-2489.

[3] Kash M M, Sautenkov V A, Zibrov A S, et al.. Ultraslow group velocity and enhanced nonlinear optical effects in a coherently driven hot atomic gas[J]. Phys Rev Lett, 1999, 82(26): 5229-5232.

[4] Ku P C, Sedgwick F, Chang-Hasnain C J, et al.. Slow light in semiconductor quantum wells[J]. Opt Lett, 2004, 29(19): 2291-2293.

[5] Sharping J E, Okawachi Y, Gaeta A L. Wide bandwidth slow light using a Raman fiber amplifier[J]. Opt Express, 2005, 13(16): 6092-6098.

[6] Povinelli M, Steven J, Joannopoulos J. Slow light, band-edge waveguides for tunable time delays[J]. Opt Express, 2005,13(18): 7145-7159.

[7] Jacob K. Adiabatically tunable optical delay lines and their performance limitations[J]. Opt Lett, 2005, 30(20): 2778-2780.

[8] Zhai Yi, Tian Huiping, Ji Yuefeng. Slow light property improvement and optical buffer capability in ring-shape-hole photonic crystal waveguide[J]. J Lightwave Technol, 2011, 29(20): 3083-3090.

[9] Soljaic′ M, Johnson S G. Photonic-crystal slow-light enhancement of nonlinear phase sensitivity[J]. J Opt Soc Am B, 2002, 19(9): 2052-2059.

[10] Baba T, Kawasaki T, Sasaki H, et al.. Large delay-bandwidth product and tuning of slow light pulse in photonic crystal coupled waveguide[J]. Opt Express, 2008, 16(12): 9245-9253.

[11] Settle M D, Engelen R J P, Salib M, et al.. Flatband slow light in photonic crystals featuring spatial pulse compression and terahertz bandwidth[J]. Opt Express, 2007, 15(1): 219-226.

[12] Xu Qianfan, Dong Ping, Lipson M. Breaking the delay-bandwidth limit in a photonic structure[J]. Nature Physics, 2007, 3(6): 406-410.

[13] Casas-Bedoya A, Husko C, Monat C, et al.. Slow-light dispersion engineering of photonic crystal waveguides using selective microfluidic infiltration[J]. Opt Lett, 2012, 37(20): 4215-4217.

[14] Vlasov Y A, O′Boyle M, Hamann H F, et al.. Active control of slow light on a chip with photonic crystal waveguides[J]. Nature, 2005, 483(7064): 65-69.

[15] Ebnali-Heidari M, Grillet C, Monat C, et al.. Dispersion engineering of slow light photonic crystal waveguides using microfluidic infiltration[J]. Opt Express, 2009, 17(3): 1628-1635.

[16] Lidroikis E, Sigalas M M, Soukoulis C M, et al.. Tight-binding parameterization for photonic band gap materials[J]. Phys Rev Lett, 1998, 81(7): 1405-1408.

[17] Leung K M, Liu Y F. Full vector wave calculation of photonic band structures in face-centered-cubic dielectric media[J]. Phys Rev Lett, 1990, 65(21): 2646-2649.

[18] Johnson S G, Joannopoulos J D. Block-iterative frequency-domain methods for Maxwell′s equations in a planewave basis[J]. Opt Express, 2001, 8(3): 173-190.

[19] Mazoyer S, Lalanne P, Rodier J C, et al.. Statistical fluctuations of transmission in slow light photonic-crystal waveguides[J]. Opt Express, 2010, 18(14): 14654-14663.

[20] Olivier S, Benisty H, Weisbuch C, et al.. Coupled-mode theory and propagation losses in photonic crystal waveguides[J]. Opt Express, 2003, 11(13): 1490-1496.

[21] Swati R, Ravindra S, Rue RMDL. Slow light miniature devices with ultra-flattened dispersion in silicon-on-insulator photonic crystal[J]. Opt Express, 2009, 17(16): 13315-13325.

[22] ASyntjoki A, Mulot M, Ahopelto J, et al.. Dispersion engineering of photonic crystal waveguides with ring-shaped holes[J]. Opt Express, 2007, 15(13): 8323-8328.

[23] 李长红, 万勇, 毛强明. 椭圆柱微腔光子晶体耦合腔波导的慢光特性研究[J]. 光学学报, 2015, 35(4): 0416002.

    Li Changhong, Wan Yong, Mao Qiangming. Research of slow light performances of photonic crystal coupled resonator optical waveguides formed by oval rods cavities[J]. Acta Optica Sinica, 2015, 35(4): 0416002.

[24] 韩金涛, 张巍, 魏凤娟, 等. Ge20Sb15Se65硫基光子晶体平板波导的宽带慢光特性研究[J]. 中国激光, 2015, 42(6): 0606002.

    Han Jintao, Zhang Wei, Wei Fengjuan, et al.. Investigation of wideband slow light in Ge20Sb15Se65 photonic crystal slab waveguides[J]. Chinese J Lasers, 2015, 42(6): 0606002.

[25] Mizuki S, Norihiro I, Yosuke H, et al.. Nonlinear enhancement in photonic crystal slow light waveguides fabricated using CMOS-compatible process[J]. Opt Express, 2011, 19(22): 22208-22218.

[26] Ishikura N, Hosoi R, Hayakawa R, et al.. Photonic crystal tunable slow light device integrated with multi-heaters[J].Appl Phys Lett, 2012, 100(22): 221110.

[27] 董小伟, 权炜. 宽带低群速度新型光子晶体慢光波导[J]. 光学学报, 2014, 34(s1): s106007.

    Dong Xiaowei, Quan Wei. Wideband and low group velocity in a novel photonic crystal waveguide[J]. Acta Optica Sinica, 2014, 34(s1): s106007.

崔乃迪, 寇婕婷, 赵恒, 曹国威, 王皖君, 郭进, 冯俊波. 应用于相控阵雷达的光子晶体慢光波导光实时延迟线[J]. 光学学报, 2016, 36(6): 0616001. Cui Naidi, Kou Jieting, Zhao Heng, Cao Guowei, Wang Wanjun, Guo Jin, Feng Junbo. Optical True Time-Delay lines of Photonic Crystal Slow Light Waveguides Used in Phased Array Radar[J]. Acta Optica Sinica, 2016, 36(6): 0616001.

本文已被 4 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!