中国激光, 2019, 46 (2): 0206002, 网络出版: 2019-05-09   

改进光纤光栅应变分布解调算法中优化目标函数的理论与方法 下载: 1033次

Theory and Method for Improving Optimization Objective Function in Demodulation Algorithm of Fiber Bragg Grating Strain Distribution
作者单位
重庆大学光电工程学院教育部重点实验室, 重庆 400044
引用该论文

张伟, 苏超乾, 张梅, 雷小华, 章鹏, 陈伟民. 改进光纤光栅应变分布解调算法中优化目标函数的理论与方法[J]. 中国激光, 2019, 46(2): 0206002.

Wei Zhang, Chaoqian Su, Mei Zhang, Xiaohua Lei, Peng Zhang, Weimin Chen. Theory and Method for Improving Optimization Objective Function in Demodulation Algorithm of Fiber Bragg Grating Strain Distribution[J]. Chinese Journal of Lasers, 2019, 46(2): 0206002.

参考文献

[1] Sante D R. Fibre optic sensors for structural health monitoring of aircraft composite structures: recent advances and applications[J]. Sensors, 2015, 15(8): 18666-18713.

    Sante D R. Fibre optic sensors for structural health monitoring of aircraft composite structures: recent advances and applications[J]. Sensors, 2015, 15(8): 18666-18713.

[2] 廖延彪, 苑立波, 田芊. 中国光纤传感40年[J]. 光学学报, 2018, 38(3): 0328001.

    廖延彪, 苑立波, 田芊. 中国光纤传感40年[J]. 光学学报, 2018, 38(3): 0328001.

    Liao Y B, Yuan L B, Tian Q. The 40 years of optical fiber sensors in China[J]. Acta Optica Sinica, 2018, 38(3): 0328001.

    Liao Y B, Yuan L B, Tian Q. The 40 years of optical fiber sensors in China[J]. Acta Optica Sinica, 2018, 38(3): 0328001.

[3] 钱牧云, 余有龙. 基于逆传播神经网络的光纤布拉格光栅触觉传感[J]. 中国激光, 2017, 44(8): 0806001.

    钱牧云, 余有龙. 基于逆传播神经网络的光纤布拉格光栅触觉传感[J]. 中国激光, 2017, 44(8): 0806001.

    Qian M Y, Yu Y L. Tactile sensing of fiber Bragg grating based on back propagation neural network[J]. Chinese Journal of Lasers, 2017, 44(8): 0806001.

    Qian M Y, Yu Y L. Tactile sensing of fiber Bragg grating based on back propagation neural network[J]. Chinese Journal of Lasers, 2017, 44(8): 0806001.

[4] 孙诗晴, 初凤红. 基于优化神经网络算法的光纤布拉格光栅电流传感器的温度补偿[J]. 光学学报, 2017, 37(10): 1006001.

    孙诗晴, 初凤红. 基于优化神经网络算法的光纤布拉格光栅电流传感器的温度补偿[J]. 光学学报, 2017, 37(10): 1006001.

    Sun S Q, Chu F H. Temperature compensation of fiber Bragg grating current sensor based on optimized neural network algorithm[J]. Acta Optica Sinica, 2017, 37(10): 1006001.

    Sun S Q, Chu F H. Temperature compensation of fiber Bragg grating current sensor based on optimized neural network algorithm[J]. Acta Optica Sinica, 2017, 37(10): 1006001.

[5] 张伟. 光纤布拉格光栅应变传感系统可靠性的关键技术研究[D]. 重庆: 重庆大学, 2016: 1- 5.

    张伟. 光纤布拉格光栅应变传感系统可靠性的关键技术研究[D]. 重庆: 重庆大学, 2016: 1- 5.

    ZhangW. Key technology for reliability of fiber Bragg grating strain sensing system[D]. Chongqing: Chongqing University, 2016: 1- 5.

    ZhangW. Key technology for reliability of fiber Bragg grating strain sensing system[D]. Chongqing: Chongqing University, 2016: 1- 5.

[6] 郭永兴, 孔建益, 熊禾根, 等. 基于光纤Bragg光栅的机器人力/力矩触觉传感技术研究进展[J]. 激光与光电子学进展, 2016, 53(5): 050006.

    郭永兴, 孔建益, 熊禾根, 等. 基于光纤Bragg光栅的机器人力/力矩触觉传感技术研究进展[J]. 激光与光电子学进展, 2016, 53(5): 050006.

    Guo Y X, Kong J Y, Xiong H G, et al. Advances in robot force/torque tactile sensing technology based on fiber Bragg grating[J]. Laser & Optoelectronics Progress, 2016, 53(5): 050006.

    Guo Y X, Kong J Y, Xiong H G, et al. Advances in robot force/torque tactile sensing technology based on fiber Bragg grating[J]. Laser & Optoelectronics Progress, 2016, 53(5): 050006.

[7] Gill A, Peters K, Studer M. Genetic algorithm for the reconstruction of Bragg grating sensor strain profiles[J]. Measurement Science and Technology, 2004, 15(9): 1877-1884.

    Gill A, Peters K, Studer M. Genetic algorithm for the reconstruction of Bragg grating sensor strain profiles[J]. Measurement Science and Technology, 2004, 15(9): 1877-1884.

[8] Zheng S J, Zhang N, Xia Y J, et al. Research on non-uniform strain profile reconstruction along fiber Bragg grating via genetic programming algorithm and interrelated experimental verification[J]. Optics Communications, 2014, 315: 338-346.

    Zheng S J, Zhang N, Xia Y J, et al. Research on non-uniform strain profile reconstruction along fiber Bragg grating via genetic programming algorithm and interrelated experimental verification[J]. Optics Communications, 2014, 315: 338-346.

[9] Zhang L Y, Shen X Y, Han Y, et al. A new population initialization method of genetic algorithm applied in FBG inhomogeneous strain demodulation[J]. Proceedings of SPIE, 2015, 9620: 96200Z.

    Zhang L Y, Shen X Y, Han Y, et al. A new population initialization method of genetic algorithm applied in FBG inhomogeneous strain demodulation[J]. Proceedings of SPIE, 2015, 9620: 96200Z.

[10] 王静, 王正方, 隋青美, 等. 基于改进遗传算法双重约束的FBG应变分布重构研究[J]. 中国激光, 2012, 39(3): 0305004.

    王静, 王正方, 隋青美, 等. 基于改进遗传算法双重约束的FBG应变分布重构研究[J]. 中国激光, 2012, 39(3): 0305004.

    Wang J, Wang Z F, Sui Q M, et al. Study of FBG strain distribution reconstruction based on improved genetic algorithm dual constraint[J]. Chinese Journal of Lasers, 2012, 39(3): 0305004.

    Wang J, Wang Z F, Sui Q M, et al. Study of FBG strain distribution reconstruction based on improved genetic algorithm dual constraint[J]. Chinese Journal of Lasers, 2012, 39(3): 0305004.

[11] 夏彦君, 郑世杰. FBG轴向非均匀应变分布的遗传规划重构方法[J]. 光电子·激光, 2010, 21(8): 1141-1145.

    夏彦君, 郑世杰. FBG轴向非均匀应变分布的遗传规划重构方法[J]. 光电子·激光, 2010, 21(8): 1141-1145.

    Xia Y J, Zheng S J. Non-uniform strain profile reconstruction of FBG via genetic programming[J]. Journal of Optoelectronics·Laser, 2010, 21(8): 1141-1145.

    Xia Y J, Zheng S J. Non-uniform strain profile reconstruction of FBG via genetic programming[J]. Journal of Optoelectronics·Laser, 2010, 21(8): 1141-1145.

[12] Huang G J, Wei C B, Chen S Y, et al. Reconstruction of structural damage based on reflection intensity spectra of fiber Bragg gratings[J]. Measurement Science and Technology, 2014, 25(12): 125109.

    Huang G J, Wei C B, Chen S Y, et al. Reconstruction of structural damage based on reflection intensity spectra of fiber Bragg gratings[J]. Measurement Science and Technology, 2014, 25(12): 125109.

[13] Shi C Z, Zeng N, Zhang M, et al. Adaptive simulated annealing algorithm for the fiber Bragg grating distributed strain sensing[J]. Optics Communications, 2003, 226(1/2/3/4/5/6): 167-173.

    Shi C Z, Zeng N, Zhang M, et al. Adaptive simulated annealing algorithm for the fiber Bragg grating distributed strain sensing[J]. Optics Communications, 2003, 226(1/2/3/4/5/6): 167-173.

[14] Detka M, Kaczmarek Z. Distributed strain reconstruction based on a fiber Bragg grating reflection spectrum[J]. Metrology and Measurement Systems, 2013, 20(1): 53-64.

    Detka M, Kaczmarek Z. Distributed strain reconstruction based on a fiber Bragg grating reflection spectrum[J]. Metrology and Measurement Systems, 2013, 20(1): 53-64.

[15] Rodriguez-Cobo L, Cobo A. Lopez-Higuera J M. Recovering a fiber Bragg grating axial strain distribution from its reflection spectrum[J]. Optics Letters, 2013, 38(13): 2327-2329.

    Rodriguez-Cobo L, Cobo A. Lopez-Higuera J M. Recovering a fiber Bragg grating axial strain distribution from its reflection spectrum[J]. Optics Letters, 2013, 38(13): 2327-2329.

[16] Wang H T, Zhang G Z, Zheng S J. Reconstruction of the nonuniform strain profile for fiber Bragg grating using dynamic particle swarm optimization algorithm and its experimental verification[J]. Optical Engineering, 2013, 52(10): 107103.

    Wang H T, Zhang G Z, Zheng S J. Reconstruction of the nonuniform strain profile for fiber Bragg grating using dynamic particle swarm optimization algorithm and its experimental verification[J]. Optical Engineering, 2013, 52(10): 107103.

[17] Zou H B, Liang D K, Zeng J, et al. Quantum-behaved particle swarm optimization algorithm for the reconstruction of fiber Bragg grating sensor strain profiles[J]. Optics Communications, 2012, 285(5): 539-545.

    Zou H B, Liang D K, Zeng J, et al. Quantum-behaved particle swarm optimization algorithm for the reconstruction of fiber Bragg grating sensor strain profiles[J]. Optics Communications, 2012, 285(5): 539-545.

[18] Wen X Y, Yu Q. Reconstruction of strain distribution in fiber Bragg gratings with differential evolution algorithm[J]. Optoelectronics Letters, 2008, 4(6): 403-406.

    Wen X Y, Yu Q. Reconstruction of strain distribution in fiber Bragg gratings with differential evolution algorithm[J]. Optoelectronics Letters, 2008, 4(6): 403-406.

[19] Guo H Y, Zheng Y, Tang J G, et al. Reflectivity measurement of weak fiber Bragg grating (FBG)[J]. Journal of Wuhan University of Technology-Materials Science Edition, 2012, 27(6): 1177-1179.

    Guo H Y, Zheng Y, Tang J G, et al. Reflectivity measurement of weak fiber Bragg grating (FBG)[J]. Journal of Wuhan University of Technology-Materials Science Edition, 2012, 27(6): 1177-1179.

[20] Vesterstrom J, Thomsen R. A comparative study of differential evolution, particle swarm optimization, and evolutionary algorithms on numerical benchmark problems[J]. Proceedings of the 2004 Congress on Evolutionary Computation, 2004: 1980-1987.

    Vesterstrom J, Thomsen R. A comparative study of differential evolution, particle swarm optimization, and evolutionary algorithms on numerical benchmark problems[J]. Proceedings of the 2004 Congress on Evolutionary Computation, 2004: 1980-1987.

[21] Ali T A, Shehata M I, Mohamed N A. Design and performance investigation of a highly accuratea-podized fiber Bragg grating-based strain sensor in single and quasi-distributed systems[J]. Applied Optics, 2015, 54(16): 5243-5251.

    Ali T A, Shehata M I, Mohamed N A. Design and performance investigation of a highly accuratea-podized fiber Bragg grating-based strain sensor in single and quasi-distributed systems[J]. Applied Optics, 2015, 54(16): 5243-5251.

张伟, 苏超乾, 张梅, 雷小华, 章鹏, 陈伟民. 改进光纤光栅应变分布解调算法中优化目标函数的理论与方法[J]. 中国激光, 2019, 46(2): 0206002. Wei Zhang, Chaoqian Su, Mei Zhang, Xiaohua Lei, Peng Zhang, Weimin Chen. Theory and Method for Improving Optimization Objective Function in Demodulation Algorithm of Fiber Bragg Grating Strain Distribution[J]. Chinese Journal of Lasers, 2019, 46(2): 0206002.

本文已被 5 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!