中国激光, 2020, 47 (2): 0207034, 网络出版: 2020-02-21   

光学相干断层成像术评估细菌诱导性炎症 下载: 924次特邀研究论文

Assessment of Bacterial Inflammation Based on Optical Coherence Tomography Angiography
作者单位
1 澳门大学健康科学学院癌症研究中心, 澳门 999078
2 广州医科大学附属第三医院超声医学科, 广东 广州 510150
3 澳门大学认知与脑科学研究中心, 澳门 999078
摘要
光学相干断层血管造影术(OCTA)是研究微血管网络和微循环的重要工具。采用高灵敏度和高分辨率的光学相干断层血管成像技术对细菌诱导的裸鼠耳朵炎症模型进行监测和评估。成像结果表明:光学相干断层血管造影术可以高灵敏度和高分辨率地监测细菌诱导性炎症过程中,小鼠耳朵免疫血管反应诱发的微血管网络密度差异和血管形态变化;细菌感染之后,小鼠耳朵的OCT(optical coherence tomography)血管信号明显增强,这是由于细菌诱导的血管发炎促进了血管中红细胞的增多,从而增强了OCT信号。最后,健康被试者手掌处的高密集血管网络图像,证明了光学相干断层血管造影术用于临床评估炎症的可能性。该方法有助于进一步认识炎症的病理机制,为临床评估炎症开辟了新途径。
Abstract
Optical coherence tomography angiography (OCTA) is an important tool for investigating microvascular networks and microcirculation in living tissue. In this study, OCTA was employed for noninvasive in vivo monitoring and assessment of inflammation induced by bacteria in a mouse ear model. Imaging results demonstrated that OCTA can monitor changes in microvascular density and morphology of blood vessels caused by immunovascular responses during the inflammatory process with a high degree of resolution and sensitivity. Distinctly enhanced OCT signals from the mouse ear were observed following bacterial infection owing to an influx of red blood cells caused by the bacteria. A highly dense microvascular network noted in the palms of healthy subjects by OCTA, demonstrates the feasibility of OCTA for the clinical evaluation of inflammation. This method can improve the understanding of the pathological mechanisms of inflammation and can be useful in the clinical evaluation of inflammation.

1 引言

炎症通常是由某类有害的刺激(如病原体、受损细胞或者外源刺激物)施加在生物组织体上而造成的免疫血管反应,一般涉及免疫细胞、血管和分子介质[1]。对炎症进行实时监测和评估可以更好地理解各种疾病的病因,如心脏病、癌症、慢性呼吸道疾病、中风、阿尔茨海默病、糖尿病、肺炎、肾脏疾病和流感,等等,这些疾病都已被证实其早期发病的病理机制与炎症有着千丝万缕的关系[2-11]。截至目前,许多非侵入性成像技术,如磁共振成像(MRI)、超声和电子计算机断层扫描(CT),常被用作临床上研究炎症生物学机制的工具[12]。在现有的成像模式中,光学相干断层扫描成像技术(OCT)是一种可以在分子和细胞水平上对疾病机制进行研究的临床化手段[13],具有超高的分辨率。OCT设备可以清晰地显示出组织和血管的细微的形态特征。光学相干断层血管造影术(OCTA)是近年来被引入临床的一种眼科成像技术,已成为研究微血管和微循环的重要工具。在原理上,OCTA是通过检测血管内动态散射信号来对血管进行成像的,而这些信号主要来源于红细胞的运动。因而,红细胞的数量和运动速度决定了OCT的信号强度。迄今为止,OCT已经被成功运用于皮肤性疾病、眼科疾病和病理学等方面的研究,如老年性黄斑、视网膜病变、浅表的肿瘤和组织切片等[14-20]

本研究小组采用感染性细菌诱导小鼠的耳朵形成小鼠炎症模型[21],然后利用高分辨率和高灵敏度的OCT对小鼠耳朵炎症进行实时检测和监测。结果发现:OCT能够提供细菌诱导性炎症过程中小鼠耳朵免疫血管反应诱发的微血管网络密度差异、血管形态变化和微循环异常;细菌诱导的血管发炎使得血管中的红细胞增多,从而增强了OCT信号。鉴于OCT在临床应用上的广泛性,本文也获取了健康被试者手掌处的高密集血管网络图像,证明了OCTA用于临床上评估炎症和其他疾病的可能性。该方法有助于进一步认识炎症及其他疾病的病理机制,为临床评估炎症开辟了新途径。

2 方法和材料

2.1 大肠杆菌的制备及动物模型的建立

将大肠杆菌置于37 ℃的经过灭菌处理的Luria-Bertani (LB)液体培养基(3 mL)中培养,同时将培养大肠杆菌的液体LB培养基放入转式恒温振荡培养箱中培养10~12 h,设置转速为200 r/min,温度为37 ℃。此外,用磷酸盐缓冲盐水(PBS)清洗一遍细菌,使其悬浮于装有PBS的培养基中,然后重复用PBS进行三次细菌洗涤,将其完全悬浮在不同浓度的PBS中,用于后期建立动物模型。

使用6~8周大的裸鼠进行实验,并且实验完全按照澳门大学动物伦理委员会制定的动物研究规则指引进行。用麻醉机麻醉小鼠后,用30号针头配备1 L注射器将50 mL浓度为108 CFU/mL(CFU:Colony-Forming Units)细菌注射到小鼠耳朵内,诱导感染炎症反应。在注射后6 h到一周的时间内,采用OCT系统对小鼠耳朵进行检测和监测。

2.2 OCT成像技术

图1所示为实验用OCT系统,其光源为一个窄带发光二极管,中心波长为1325 nm,光谱带宽超过100 nm。该OCT系统能够实现高分辨率成像,轴向分辨率为10 μm,横向分辨率为13 μm。该OCT系统使用两个高速光学振镜,且能以高达76 kHz/s的成像速度进行快速批量采集,能够提供实时、深度分辨的横断面成像和三维成像。在本研究中,小鼠耳朵被平铺于手动平移台上,以便调整扫描区域,数据采集和图像处理在高性能计算机上同时进行。

图 1. OCT成像系统图

Fig. 1. Scheme of OCT imaging system

下载图片 查看所有图片

3 结果与讨论

图2(a)、(b)显示了小鼠耳朵被细菌感染前后的成像结果,两图左侧一列分别为小鼠耳朵的CCD图片,右侧一列为OCT血管成像结果,图中红色方框为扫描区域,扫描范围为4 mm×4 mm,白色圆圈为细菌感染的炎症区域。可以看出:在炎症区域,早期血管坏死,血管密度逐渐减少;到了第7天,可以观察到白色圆圈区域内生长了一些微细血管,这预示着小鼠耳朵在自身免疫系统的调控下已治愈了炎症。同时,从图2(c)、(d)的统计结果不难发现,注射细菌后,血管的OCT强度信号以及血管网络的密集度得到了增强,这表示细菌本身或者细菌感染后的某种免疫反应,会对周围血管起到OCT造影效果。通过文献调研及分析后可知,对于发炎的个体,血常规化验结果会显示血液中的红细胞明显增多[22],而OCTA在原理上是通过检测血管内动态散射信号来对血管进行成像的,这些动态信号主要来源于红细胞的运动。因此,可以初步得出结论:发炎状态下诱导的红细胞增多,进一步增强了OCT的血管造影效果。此外,从图2(e)可以看出,正常组织区域的OCT信号衰减得较慢,而感染区域的OCT信号随着深度增加衰减得比较明显。

图 2. 小鼠耳朵被细菌感染后的OCT成像结果。(a) 1号小鼠耳朵血管监测结果,红色方框为扫描区域(4 mm×4 mm),白色圆圈为细菌感染区域;(b) 2号小鼠耳朵监测结果;(c)小鼠耳朵扫描区域OCT信号强度随感染时间的变化,**表示P<0.01, ***表示P<0.001;(d) 归一化血管网络密度随感染时间的变化;(e)小鼠耳朵健康区域和感染区域的OCT信号随深度变化的衰减曲线

Fig. 2. OCT imaging of two mice with the ear infected by bacteria. (a) Imaging of ear of mouse 1, the red box stands for the scanning area (4 mm×4 mm), while the white circle is the infected area; (b) imaging results of mouse 2; (c) variation of OCT intensity in scanning area with infection time, **represents P<0.01, and ***represents P<0.001; (d) variation of normalized angiogram vessel density (AVD) with infection time; (e) OCT signal attenuation curves with depth in normal and inflamed

下载图片 查看所有图片

图3所示为健康被试者手掌处高密集的血管网络图,显示了OCT强大的血管造影功能。从图3(b)中也可以看出,OCT可以重建出组织体的三维精密结构图像,该结果证实了OCT血管造影术用于临床上评估炎症的可能性。

图 3. 健康被试者手掌处的OCT高密集血管网络系统,红色方框为扫描区域(4 mm×4 mm)

Fig. 3. OCT microvascular networks of palm from healthy subject, and the red box stands for scanning areas (4 mm×4 mm)

下载图片 查看所有图片

4 结论

本文采用高分辨率和高灵敏度的OCT成像系统对接种了大肠杆菌的小鼠耳朵进行成像,被感染的小鼠耳朵是研究炎症发病机制的强有力的动物模型。基于OCT成像可以明确地确定三维的精密组织结构,同时也可以重构出高密集性血管网络图。通过OCT信号强度和血管网络密集度以及对比感染区域和非感染区域的OCT信号衰减曲线,可以初步区分正常组织和感染组织之间的边界。此外,本文初步论证了细菌本身或者细菌感染后的炎症反应,会使血管内的红细胞增多,从而对周围血管起到OCT造影的效果。可见,使用OCT成像可以提高检测和监测炎症的敏感性,为临床评估炎症提供了可行性。

参考文献

[1] Ferrero-Miliani L, Nielsen O H, Andersen P S, et al. Chronic inflammation: importance of NOD2 and NALP3 in interleukin-1β generation[J]. Clinical and Experimental Immunology, 2006, 147(2): 227-235.

[2] Mantovani A. Inflammation by remote control[J]. Nature, 2005, 435(7043): 752-753.

[3] Yu H, Pardoll D, Jove R. STATs in cancer inflammation and immunity: a leading role for STAT3[J]. Nature Reviews Cancer, 2009, 9(11): 798-809.

[4] Seemungal T, Harper-Owen R, Bhowmik A, et al. Respiratory viruses, symptoms, and inflammatory markers in acute exacerbations and stable chronic obstructive pulmonary disease[J]. American Journal of Respiratory and Critical Care Medicine, 2001, 164(9): 1618-1623.

[5] Sevenoaks M J, Stockley R A. Chronic obstructive pulmonary disease, inflammation and co-morbidity——a common inflammatory phenotype?[J]. Respiratory Research, 2006, 7(1): 70.

[6] Huang J, Upadhyay U M, Tamargo R J. Inflammation in stroke and focal cerebral ischemia[J]. Surgical Neurology, 2006, 66(3): 232-245.

[7] Emsley H C A, Tyrrell P J. Inflammation and infection in clinical stroke[J]. Journal of Cerebral Blood Flow & Metabolism, 2002, 22(12): 1399-1419.

[8] Akiyama H. Inflammation and Alzheimer's disease[J]. Neurobiology of Aging, 2000, 21(3): 383-421.

[9] Navarro J F, Mora C. Diabetes, inflammation, proinflammatory cytokines, and diabetic nephropathy[J]. The Scientific World Journal, 2006, 6: 908-917.

[10] Peper R L, van Campen H. Tumor necrosis factor as a mediator of inflammation in influenza A viral pneumonia[J]. Microbial Pathogenesis, 1995, 19(3): 175-183.

[11] Rainsford K D. Influenza (“Bird Flu”), inflammation and anti-inflammatory/analgesic drugs[J]. Inflammopharmacology, 2006, 14(1/2): 2-9.

[12] Hammoud D A. Molecular imaging of inflammation:current status[J]. Journal of Nuclear Medicine, 2016, 57(8): 1161-1165.

[13] Oldenburg AL, Applegate BE, Izatt JA, et al. Molecular OCT contrast enhancement and imaging[M] ∥Optical Coherence Tomography. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008: 713- 756.

[14] Fleckenstein M, Issa P C, Helb H M, et al. High-resolution spectral domain-OCT imaging in geographic atrophy associated with age-related macular degeneration[J]. Investigative Opthalmology & Visual Science, 2008, 49(9): 4137-4144.

[15] Jaffe G J, Caprioli J. Optical coherence tomography to detect and manage retinal disease and glaucoma[J]. American Journal of Ophthalmology, 2004, 137(1): 156-169.

[16] Yeoh J, Rahman W, Chen F, et al. Choroidal imaging in inherited retinal disease using the technique of enhanced depth imaging optical coherence tomography[J]. Graefe's Archive for Clinical and Experimental Ophthalmology, 2010, 248(12): 1719-1728.

[17] Nguyen F T, Zysk A M, Chaney E J, et al. Intraoperative evaluation of breast tumor margins with optical coherence tomography[J]. Cancer Research, 2009, 69(22): 8790-8796.

[18] Bechara F G, Gambichler T, Stucker M, et al. Histomorphologic correlation with routine histology and optical coherence tomography[J]. Skin Research and Technology, 2004, 10(3): 169-173.

[19] Deegan A J, Talebi-Liasi F, Song S Z, et al. Optical coherence tomography angiography of normal skin and inflammatory dermatologic conditions[J]. Lasers in Surgery and Medicine, 2018, 50(3): 183-193.

[20] Deegan A J, Wang W, Men S J, et al. Optical coherence tomography angiography monitors human cutaneous wound healing over time[J]. Quantitative Imaging in Medicine and Surgery, 2018, 8(2): 135-150.

[21] Liu Y B, Fu L, Xu M Z, et al. Dual-modal in vivo fluorescence/photoacoustic microscopy imaging of inflammation induced by GFP-expressing bacteria[J]. Sensors, 2019, 19(2): 238.

[22] 于飞, 张浪, 梁青, 等. 佐剂性关节炎大鼠的血常规[J]. 中国比较医学杂志, 2014, 24(1): 5-7.

    Yu F, Zhang L, Liang Q, et al. Blood routine of adjuvant arthritis rats[J]. Chinese Journal of Comparative Medicine, 2014, 24(1): 5-7.

刘玉滨, 陈智毅, 袁振. 光学相干断层成像术评估细菌诱导性炎症[J]. 中国激光, 2020, 47(2): 0207034. Liu Yubin, Chen Zhiyi, Yuan Zhen. Assessment of Bacterial Inflammation Based on Optical Coherence Tomography Angiography[J]. Chinese Journal of Lasers, 2020, 47(2): 0207034.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!