人工晶体学报, 2020, 49 (4): 618, 网络出版: 2020-06-15  

基于第一性原理与BP神经网络的V掺杂TiO2光电性质研究

Photoelectric Properties of V-doped TiO2 Based on the First-principle and BP Neural Network
作者单位
江苏大学机械工程学院,微纳光电子器件及系统先进制造与可靠性国际实验室,镇江 212000
摘要
通过采用密度泛函理论第一性原理计算,主要研究不同浓度下V掺杂TiO2的结构、能带、电导率、反射和吸收率的变化。建立本征TiO2和VxTi1-xO2(x=0.062 5,0.125,0.187 5)的掺杂模型,掺杂体系具有较高的电导率且具有N型半导体特征。通过BP神经网络对模型的能带结果进行训练,训练的模型数据结果发现掺杂后具有较高的电导率,禁带宽度明显降低。综合以上结果,在x=0.187 5时实现最佳电导率和光学性能。
Abstract
Based on the density functional theory, the change of structure, energy band, conductivity, reflectivity and absorptivity of V-TiO2 of different concentration were investigated by first principle calculation. Intrinsic doping model of TiO2 and VxTi1-xO2(x=0.062 5, 0.125, 0.187 5)was established and the doping system is higher in conductivity with characteristics of N-type semiconductors. BP neural network was adopted to train the energy band results of the intrinsic doping model, and the data results of training model show that higher conductivity was achieved after doping and the energy gap was significantly reduced. Considering the above results, optimal conductivity and optical performance can be achieved when x=0.187 5.
参考文献

[1] Ting H K, Lu N, Ma S B, et al. Progress in electron-transport materials in application of perovskite solar cells[J].Acta Physica Sinica,2015,64(3):38802-038802.

[2] 徐 凌,唐超群,黄宗斌,等.V掺杂锐铁矿相TiO2的光吸收特性[J].物理化学学报,2010,26(5):1401-1407.

[3] Liu J, Zhang J, Yue G, et al. W-doped TiO2 Photoanode for high performance perovskite solar cell[J].Electrochimica Acta,2016,195:143-149.

[4] Liu D, Li S, Zhang P, et al. Efficient planar heterojunction perovskite solar cells with li-doped compact TiO2layer[J].Nano Energy,2017,31:462-468.

[5] Qin P, Domanski A L, Chandiran A K, et al. Yttrium-substituted nanocrystalline tio2 photoanodes for perovskite based heterojunction solar cells.[J].Nanoscale,2014,6(3):1508-1514.

[6] Thambidurai M, Kim J, Song H J, et al. Enhanced Power conversion efficiency of inverted organic solar cells by using solution processed Sn-doped TiO2 as an electron transport layer[J].Journal of Materials Chemistry A,2014,2(29):11426-11431.

[7] 赖奂汶,李小花,黄清安,等.人工神经网络法在金属表面处理中的应用[A].全国转化膜及表面精饰技术论坛,2019(52).

[8] 阮秀凯,刘 莉,张耀举,等. 现代无线通信系统盲处理技术新进展:基于智能算法[M].上海:复旦大学出版社,2015:45.

[9] 李 硕.人工神经网络介绍[J].科技传播,2011(7):111+175.

[10] 邱锡鹏.神经网络与深度学习[M].上海:复旦大学出版社,2019:102.

[11] 刘云龙,高存臣,任启峰,等.水下机器人基于sigmoid函数的软变结构控制[J].机电与控制学报,2012(2):1007-449X.

[12] Segall M D, Lindan P J D, Probert M J,et al. First-principles simulation:ideas, illustrations and the castep code[J].Journal of Physics:Condensed Matter,2002,14(11):2717-2744.

[13] Burdett J K, Hughbanks T, Miller G J, et al. ChemInform abstract:structural-electronic relationships in inorganic solids:powder neutron diffraction studies of the rutile and anatase polymorphs of titanium dioxide at 15 and 295 K[J].ChemInform,1987,18(37):3639-3646.

[14] Zhao X Z. Calculation of cation radius[J].Acta chemical,1980(3):11-16.

[15] Czoska A M, Livraghi S, Chiesa M, et al. The nature of defects in fluorine-doped TiO2[J].Journal of Physical Chemistry C,2008,112(24):8951-8956.

[16] 张晓勇,晁明举,梁二军,等.钒掺杂纳米TiO2薄膜的结构和光吸收性能[J].无机材料学报,2009,24(1):34-38.

李昌磊, 杨平. 基于第一性原理与BP神经网络的V掺杂TiO2光电性质研究[J]. 人工晶体学报, 2020, 49(4): 618. LI Changlei, YANG Ping. Photoelectric Properties of V-doped TiO2 Based on the First-principle and BP Neural Network[J]. Journal of Synthetic Crystals, 2020, 49(4): 618.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!