人工晶体学报, 2020, 49 (10): 1782, 网络出版: 2021-01-09  

一种弯曲主导型热膨胀点阵超材料的带隙特性研究

Band Gaps Characteristics of a Bending-Oriented Thermal Expansion Lattice Metamaterials
作者单位
沈阳航空航天大学,辽宁省飞行器复合材料结构分析与仿真重点实验室,沈阳 110136
摘要
当前科技的发展对材料的多功能性提出了更高的要求。本文利用有限元法针对一种具有三角晶格的弯曲主导型热膨胀点阵超材料(JTCLM)进行了带隙研究,并讨论了几何参数对JTCLM单胞带隙的影响。结果表明,当JTCLM单胞存在弯曲曲率时将会产生带隙,且材料的几何参数对JTCLM点阵复合材料的带隙具有显著的影响。结果为实现热膨胀/带隙双目标的超材料设计提供了理论基础。通过合理的选材和形状设计,有望实现特定膨胀性质和带隙设计的双目标共赢,使材料具有更好的可调谐性和多功能性。
Abstract
The current development of science and technology has put forward higher requirements for the versatility of materials. In this paper, a bending-oriented joint-bonded triangular cell lattice metamaterial (JTCLM) with triangular lattice was studied, and the influencce of geometrical parameters on the band gaps of JTCLM unit cell was discussed. The results show that the band gaps will be generated when the JTCLM cell has curved curvature, and the geometrical parameters of the microstructure have significant influence on the band gap of the JTCLM lattice composite. The results provide a theoretical basis for the design of metamaterials with binocular objects of thermal expansion and band gaps. Through reasonable material selection and shape design, it is expected to achieve a win-win situation with specific expansion properties and band gap design, so that the material has better tunability and versatility.
参考文献

[1] Kushwaha M S, Halevi P, Dobrzynski L. Acoustic band structure of periodic elastic composites[J]. Physical Review Letters, 1993, 71(13): 2022-2025.

[2] Kushwaha M S. Classical band structure of periodic elastic composites[J]. International Journal of Modern Physics B, 1996, 10(9): 977-1094.

[3] Jensen J. Phononic band gaps and vibrations in one- and two-dimensional mass-spring structures[J]. Journal of Sound and Vibration, 2003, 266: 1053-1078.

[4] Chen Y, Qian F, Zuo L, et al. Broadband and multiband vibration mitigation in lattice metamaterials with sinusoidally-shaped ligaments[J]. Extreme Mechanics Letters, 2017, 17: 24-32.

[5] Hussein M I, Leamy M J, Ruzzene M. Dynamics of phononic materials and structures: historical origins, recent progress, and future outlook[J]. Applied Mechanics Reviews, 2014, 66(4): 040802.

[6] Cummer S A, Christensen J, Alu A. Controlling sound with acoustic metamaterials[J]. Nature Reviews Materials, 2016, 1(3): 16001.

[7] Hu G, Tang L, Banerjee A, et al. Metastructure with piezoelectric element for simultaneous vibration suppression and energy harvesting[J]. Journal of Vibration and Acoustics, 2017,139: 011012.

[8] 梁孝东,缪林昌,尤 佺,等.局域共振二维声子晶体的低频带隙特性研究[J].人工晶体学报,2019,48(7):1225-1232.

[9] 赵宏刚,韩小云,温激鸿,等.新型声学功能材料-声子晶体[J].材料科学与工程学报,2003,21(1):153-156.

[10] Liu Z Y, Zhang X X, Mao Y W, et al. Locally resonant sonic materials[J]. Science, 2000, 289(5485): 1 734-1 736.

[11] Huang Y, Liu S T, Zhao J. Optimal design of two-dimensional band-gap materials for uni-directional wave propagation[J]. Structural and Multidisciplinary Optimization, 2013, 48 (3): 487-499.

[12] Xu W K, Ning J Y, Lin Z B, et al. Multi-objective topology optimization of two-dimensional multi-phase microstructure phononic crystals[J]. Materials Today Communications, 2020, 22: 10080.

[13] 温熙森,温激鸿,郁殿龙,等.声子晶体[M].北京:国防工业出版社,2009.

[14] 董浩文.声/光超构材料的拓扑优化设计[D].北京:北京交通大学,2017.

[15] Wei K, Chen H, Pei Y, et al. Planar lattices with tailorable coefficient of thermal expansion and high stiffness based on dual-material triangle unit[J]. Journal of the Mechanics and Physics of Solids, 2016, 86: 173-191.

[16] Lehman J, Lakes R. Stiff lattices with zero thermal expansion[J]. Journal of Intelligent Material Systems and Structures, 2012, 23(11): 1263-1268.

[17] Lehman J, Lakes R. Stiff, strong, zero thermal expansion lattices via material hierarchy[J]. Composite Structures, 2014, 107: 654-663.

[18] Lehman J, Lakes R. Stiff lattices with zero thermal expansion and enhanced stiffness via rib cross section optimization[J]. International Journal of Mechanics and Materials in Design, 2013, 9(3): 213-225.

[19] Zhang Y C, Liang Y J, Liu S T, et al. A new design of dual-constituent triangular lattice metamaterial with unbounded thermal expansion[J]. Acta Mechanica Sinica, 2019, 35(3): 507-517.

[20] Zhang Y C, Liang Y J, Liu S T, et al. A new design for enhanced stiffness of dual-constituent triangular lattice metamaterial with unbounded thermal expansion[J]. Materials Research Express, 2019, 6(1): 015705.

[21] 王炳达,杨子豪,张永存.考虑刚度特性的零热膨胀复合材料高许用温变设计[J].复合材料学报,https://doi.org/10.13801/j.cnki.fhclxb.20200511.001.

[22] 刘 洋.二维人工周期结构中弹性波的有限元模拟研究[D].哈尔滨:哈尔滨工业大学,2018.

[23] Wu B, Wei R J, Zhao H Y, et al. Phononic band gaps in two-dimensional hybrid triangular lattice[J]. Acta Mechanica Solida Sinica, 2010, 23(3): 255-259.

[24] Caballero D, Sanchez-Dehesa J, Rubio C, et al. Large two-dimensional sonic band gaps[J]. Physical Review E, 1999, 60: 6316-6319.

刘成龙, 许卫锴, 吕树辰, 祁武超. 一种弯曲主导型热膨胀点阵超材料的带隙特性研究[J]. 人工晶体学报, 2020, 49(10): 1782. LIU Chenglong, XU Weikai, LYU Shuchen, QI Wuchao. Band Gaps Characteristics of a Bending-Oriented Thermal Expansion Lattice Metamaterials[J]. Journal of Synthetic Crystals, 2020, 49(10): 1782.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!