强激光与粒子束, 2017, 29 (10): 104102, 网络出版: 2017-10-30  

SOI纳米光波导激光熔凝光整加工温度场的数值模拟及分析

Numerical simulation and analysis on temperature field for laser melting finishing on SOI nano optical waveguide
作者单位
1 中北大学 仪器科学与动态测试教育部重点实验室, 太原 030051
2 中北大学 机电工程学院, 太原 030051
3 中国人民武装警察部队指挥学院, 天津 300250
摘要
激光表面熔凝技术可有效降低纳米光波导侧壁粗糙度进而减小光传输的散射损耗。为明确波导侧壁在KrF准分子激光表面熔凝过程的温度场演化规律,考虑材料参数随温度变化和相变潜热的影响,建立了纳米光波导侧壁激光熔凝的二维有限元数值模型,研究了熔池边界的推进行为与不同工艺参数的映射关系。结果表明:熔池形成于波导上表面与迎光侧壁夹角处;激光入射角度一定时,熔池熔深与平均能量密度正相关;熔池形貌受控于激光入射角度,随着入射角度的减小,熔池形貌由单边U形过渡为单边V形最终呈带钝角单边V形。分析表明,较大激光入射角对应的熔池形貌更有利于波导侧壁的光整加工;据此提出先确定激光入射角度以优化熔池形貌,再选取合适平均能量密度以获得足够熔化深度的工艺方法。
Abstract
Laser surface melting technology can effectively reduce nano optical waveguide sidewall roughness for scattering loss reduction. To clarify the temperature field evolution law of KrF excimer laser surface melting on waveguide sidewall, a two dimensional finite element numerical model is established, which has taken into account the effects of temperature dependences of material parameters and latent heat. Several investigations have been made about the relationships between the carry behavior forward of melting pool boundary and different processing parameters. Simulation results indicate that melting pool begins developing in the corner between the upper surface of waveguide and the laser-facing sidewall surface. At a given laser incidence angle, the depth of melting pool is correlated positively with the average energy density. Melting pool shape is mainly controlled by laser incident angle: with the decreasing incidence angle, the melting pool appears firstly single-edge U-shaped, then single-edge V-shaped, and finally single-edge V-shaped with an obtuse angle. Analysis shows that melting pool shape induced by a larger laser incidence angle is more favourable to the finishing process of waveguide sidewall. On this basis, a new process method is proposed for determinating laser incident angle to optimize the shapes of melting pool and then selecting the appropriate laser energy density to obtain sufficient melting depth.
参考文献

[1] Chen Xia, Li Chao, Tsang H K. Device engineering for silicon photonics[J]. NPG Asia Materials, 2011, 3(1): 34-40.

[2] 任馨宇, 菅傲群, 段倩倩, 等. SOI 基纳米光栅耦合器的结构改进与仿真验证[J]. 强激光与粒子束, 2015, 27: 024123. (Ren Xinyu, Jian Aoqun, Duan Qianqian, et al. Improvement and simulation model validation of nano-grating coupler based on SOI structure. High Power Laser and Particle Beams, 2015, 27: 024123)

[3] Jayatilleka H, Nasrollahy-Shiraz A, Kenyon A J. Electrically pumped silicon waveguide light sources[J]. Optics Express, 2011, 19(24): 24569-24576.

[4] Liu Liu, Kumar R, Huybrechts K, et al. An ultra-small, low-power, all-optical flip-flop memory on a silicon chip[J]. Nature Photonics, 2010, 4(3): 182-187.

[5] Estevez M C, Alvarez M, Lechuga L M. Integrated optical devices for lab-on-a-chip biosensing applications[J]. Laser & Photonics Reviews, 2012, 6(4): 463-487.

[6] Dai Daoxin, Bauters J, Bowers J E. Passive technologies for future large-scale photonic integrated circuits on silicon: polarization handling, light non-reciprocity and loss reduction[J]. Light: Science & Applications, 2012, 1: e1.

[7] Lee D H, Choo S J, Jung U, et al. Low-loss silicon waveguides with sidewall roughness reduction using a SiO2 hard mask and fluorine-based dry etching[J]. Journal of Micromechanics and Microengineering, 2014, 25: 015003.

[8] Wood M G, Chen Li, Burr J R, et al. Optimization of electron beam patterned hydrogen silsesquioxane mask edge roughness for low-loss silicon waveguides[J]. Journal of Nanophotonics, 2014, 8(1): 083098.

[9] Shi Zujun, Shao Shiqian, Wang Yi. Improved the surface roughness of silicon nanophotonic devices by thermal oxidation method[J]. Journal of Physics: Conference Series, 2011, 276: 012087.

[10] Duan Qianqian, Ren Xinyu, Jian Aoqun, et al. Micro-mechanism of silicon-based waveguide surface smoothing in hydrogen annealing[J]. Chinese Physics Letters, 2016, 33: 126801.

[11] Mitwally M E, Tsuchiya T, Tabata O, et al. Surface roughness modification of free standing single crystal silicon microstructures using KrF excimer laser treatment for mechanical performance improvement[J]. Journal of Surface Engineered Materials and Advanced Technology, 2015, 5(1): 28-41.

[12] Liang E Z, Hung S C, Hsieh Y P, et al. Effective energy densities in KrF excimer laser reformation as a sidewall smoothing technique[J]. Journal of Vacuum Science & Technology B, 2008, 26(1): 110-116.

[13] Xia Qiangfei, Murphy P F, Gao He, et al. Ultrafast and selective reduction of sidewall roughness in silicon waveguides using self-perfection by liquefaction[J]. Nanotechnology, 2009, 20: 345302.

[14] Mitwally M E, Tsuchiya T, Tabata O, et al. Improvement of tensile strength of freestanding single crystal silicon microstructures using localized harsh laser treatment[J]. Japanese Journal of Applied Physics, 2014, 53: 06JM03.

[15] 靳羽华, 赵艳, 蒋毅坚. 准分子激光微透镜整形均束装置[J]. 中国激光, 2015, 42: 0602003. (Jin Yuhua, Zhao Yan, Jiang Yijian. Microlens beam shaping and homogenizing optical system for excimer laser. Chinese Journal of Lasers, 2015, 42: 0602003)

[16] Klingshirn C F, Baltz R V, Haug H. Semiconductor optics[M]. Karlsruhe: Springer-Verlag, 2005: 44-47.

[17] 王玺, 方晓东. 准分子激光辐照K9玻璃的热力效应分析[J]. 强激光与粒子束, 2016, 28: 041002. (Wang Xi, Fang Xiaodong. Thermal and mechanical damage in K9 glass irradiated by KrF excimer laser. High Power Laser and Particle Beams, 2016, 28: 041002)

[18] Li Zewen, Zhang Hongchao, Shen Zhonghua, et al. Time-resolved temperature measurement and numerical simulation of millisecond laser irradiated silicon[J]. Journal of Applied Physics, 2013, 114: 033104.

[19] Wang Xi, Shen Zhonghua, Lu Jian, et al. Laser-induced damage threshold of silicon in millisecond, nanosecond, and picosecond regimes[J]. Journal of Applied Physics, 2010, 108: 033103.

闫树斌, 陈慧斌, 韵力宇, 焦国太. SOI纳米光波导激光熔凝光整加工温度场的数值模拟及分析[J]. 强激光与粒子束, 2017, 29(10): 104102. Yan Shubin, Chen Huibin, Yun Liyu, Jiao Guotai. Numerical simulation and analysis on temperature field for laser melting finishing on SOI nano optical waveguide[J]. High Power Laser and Particle Beams, 2017, 29(10): 104102.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!