激光生物学报, 2010, 19 (5): 678, 网络出版: 2015-10-08  

近场扫描光学成像结合量子点标记的纳米技术在细胞生物学中的应用

Combination of Near-field Scanning Optical Imaging and Quantum Dot Labeling Based Nanotechnology for Applications in Cell Biology
作者单位
1 暨南大学 a.化学系
2 暨南大学 b.附属第一医院, 广东 广州 510632
摘要
近场扫描光学显微镜(NSOM)对传统的光学分辨极限产生了革命性的突破, 可在超高光学分辨率下无侵入性和无破坏性地对生物样品进行观测。量子点(QDs)具有极好的光学性能, 如荧光寿命长、激发谱宽、生物相容性强、光稳定性好等优点, 适合先进的生物成像。NSOM结合QDs标记的纳米技术被应用在细胞生物学中。通过纳米量级NSOM免疫荧光成像( 50 nm)对特定蛋白分子在细胞表面的动态分布进行可视化研究和数量化分析, 阐明了蛋白分子在不同细胞过程中的作用机制。因此, NSOM/QD基成像系统提供了单个蛋白分子最高分辨率的荧光图像, 为可视化研究蛋白分子机制的提供了一种强有力的工具。
Abstract
Near-field scanning optical microscope (NSOM) breaks through conventional optical diffraction limit, which provide ultra-high resolution detection for the biological sample without invasion and injury. Quantum dots (QDs) have fascinating optical properties, including long fluorescence lifetime, wide luminescence spectra, high biological compatibility, and good photostability, making it suitable for advanced biological imaging. Combination of NSOM and QDs labeling based nanotechnology is applied in the cell biology. The dynamic distribution of specific protein molecules on the cell surface has been visually studied and quantitatively analyzed by nanoscale NSOM immunofluorescence imaging (50 nm), clarifying the mechanism of the protein molecule in different cellular processes. Therefore, NSOM/QD based imaging system has generated the best optical resolution for the immunofluorescence images of single protein molecule, providing a powerful tool for visually studying the mechanics of the protein molecules.
参考文献

[1] BETZG E, CHICHESTER R J. Single Molecules Observed by Near-Field Scanning Optical Microscopy[J]. Science, 1993, 262(5138): 1422-1425.

[2] DUNN R C. Near-Field Scanning Optical Microscopy[J]. Chem Rev, 1999, 99(10): 2891-2927.

[3] KIM J M, OHTTANI T, MUREMATSU H. 25 nm Resolution Single Molecular Fluorescene Imaging by Scanning Near-Field Optical/Atomic Force Microscopy[J]. Surf Sci, 2004, 549(3): 273-280.

[4] WEISS S. Fluorescence Spectroscopy of Single Biomolecules[J]. Science, 1999, 283(5408): 1676-1683.

[5] GUEST J R, STIEVATER T H, CHEN G, et al. Near-Field Coherent Spectroscopy and Microscopy of A Quantum Dot System[J]. Science, 2001, 293(5538): 2224-2227.

[6] XIE A F, DUAN S J, ZHANG Z B. S-Nitrosoglutathione-induced Mouse Thymocyte Apoptosis Studied by Fluorescence Near-Field Scanning Optical Microscopy[J]. Immu Lett, 2003, 85(3): 225-230.

[7] STEPHENS D J, ALLAN V J. Light Microscopy Techniques for Live Cell Imaging[J]. Science, 2003, 300(5616): 82-86.

[8] LEWIS A, TAHA H, STRINKOVSKI A, et al. Near-Field Optics: From Subwavelength Illumination to Nanometric Shadowing[J]. Nat Biotechnol, 2003, 21(11): 1378-1386.

[9] CHAN W C, NIE S. Quantum Dot Bioconjugates for Ultrasensitive Nonisotopic De-tection[J]. Science, 1998, 281(5385): 2016-2018.

[10] AKERMAN M E, CHAN W, LAAKKONEN P, et al. Nanocrystal Targeting in Vivo[J]. Proc Natl Acad Sci USA, 2002, 99(20): 12617-12621.

[11] GAO X, CUI Y, LEVENSON R M, et al. In Vivo Cancer Targeting and Imaging with Semiconductor Quantum Dots[J]. Nat Biotechnol, 2004, 22(8): 969-976.

[12] KLOEPFER J A, MIELKE R E, WONG M S, et al. Quantum Dots As Strain-and Me-tabolism-Specific Microbiological Bales[J]. Appl Environ Microbiol, 2003, 69(7): 4205-4213.

[13] ZHU L, ANG S, LIU W, et al. Quantum Dots As Novel Immunofluorescent Detection System for Cryptosporidium Parvum and Giaria Lamblia[J]. Appl Environ Microbiol, 2004, 70(1): 597-598.

[14] JAISWAL J K, GOLDMAN E R, MATTOUSSI H, et al. Use of Quantum Dots for Live Cell Imaging[J]. Nat Methods, 2004, 1(1): 73-78.

[15] CHEN J, PEI Y, CHEN Z, et al. Quantum Dot Labeling Based on Near-Field Optical Imaging of CD44 Molecules[J]. Micron, 2010, 41(3): 198-202.

[16] CHEN Y, SHAO L, ALI Z, et al. NSOM/QD-based Nanoscale Immune-Fluorescence Imaging of Antigen-specific T Cell Receptor Responses During An in Vivo Clonal V 2V 2 T Cell Expansion[J]. Blood, 2008, 111(8): 4220-4232.

[17] ZHONG L, LIAO W, WANG X, et al. Detection The Specific Marker of CD3 Molecules of Human Peripheral Blood T Lymphocytes Using SNOM and Quantum Dots[J]. Colloids and Surfaces A: Physicochem Eng Aspects, 2008, 313 314: 642-646.

[18] ZHONG L, ZENG G, LU X, et al. NSOM/QD-based Direct Visualization of CD3-induced and CD28-enhanced Nanospatial Coclustering of TCR and Coreceptor in Nanodomains in T Cell Activation[J]. Plos One, 2009, 4(6): e5945.

[19] CHEN Y, QIN J, CHEN Z. Fluorescence-Topographic NSOM Directly Visualizes Peak-Valley Polarities of GM1/GM3 Rafts in Cell Membrane Fluctuations[J]. J Lipid Res, 2008, 49: 2268-2275.

[20] CHEN Y, QIN J, CAI J, et al. Cold Induces Micro- and Nano-scale Reorganization of Lipid Raft Markers at Mounds of T-cell Membrane Fluctuations[J]. Plos One, 2009, 4(4): e5386.

邢晓波, 潘运龙, 金花, 陈家楠, 蔡继业. 近场扫描光学成像结合量子点标记的纳米技术在细胞生物学中的应用[J]. 激光生物学报, 2010, 19(5): 678. XING Xiao-bo, PAN Yun-long, JIN Hua, CHEN Jia-nan, CAI Ji-ye. Combination of Near-field Scanning Optical Imaging and Quantum Dot Labeling Based Nanotechnology for Applications in Cell Biology[J]. Acta Laser Biology Sinica, 2010, 19(5): 678.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!