光学学报, 2017, 37 (3): 0332001, 网络出版: 2017-03-08  

GW/cm2量级飞秒脉冲倍频的宽谱谐波产生

Broadband Second Harmonic Generation of Femtosecond Pulses at Magnitude of GW/cm2
作者单位
1 厦门理工学院光电与通信工程学院福建省光电技术与器件重点实验室, 厦门市LED照明应用工程技术研究中心, 福建 厦门 361024
2 西北工业大学理学院空间应用物理化学教育部重点实验室, 陕西省光信息技术重点实验室, 陕西 西安 710072
摘要
使用含镁摩尔分数为5%的掺镁铌酸锂晶体对57.4 fs脉冲在1550 nm通信波段进行了Ⅰ型(o+o-e)和0型(e+e-e)的倍频对比实验。对于Ⅰ型倍频, 在4.3 GW/cm2的峰值功率密度下得到了谱宽为28 nm、脉宽为79 fs的谐波脉冲, 转换效率最高达54%; 对于0型倍频, 在3.7 GW/cm2的峰值功率密度下得到了谱宽为2.1 nm的谐波脉冲, 转换效率最高为40%。分别从飞秒脉冲多波长成分的相位匹配(频域)和基波与谐波脉冲的群速度匹配(时域)两个角度, 对倍频过程中基波脉冲和谐波脉冲的演变进行了详细分析。发现同时满足多波长成分相位匹配时, 传播中谐波的谱宽能维持不变; 而仅满足中心波长相位匹配时, 谐波光谱则随着传播长度的增加而逐渐变窄。
Abstract
The experiments of second harmonic generation (SHG) of 57.4 fs pulses at 1550 nm wavelength for type Ⅰ(o+o-e) and type 0 (e+e-e) are achieved using Mg-doped lithium niobate crystal with mole fraction of 5% of magnesium. For SHG of type Ⅰ, the second harmonic pulse with spectrum width of 28 nm and pulse width of 79 fs is obtained at the peak density of 4.3 GW/cm2, and the conversion efficiency is up to 54%. For SHG of type 0, the second harmonic pulse with spectrum width of 2.1 nm is obtained at the peak density of 3.7 GW/cm2, and the conversion efficiency is up to 40%. The key points of the evolution for fundamental pulse and second harmonic pulse in SHG process are analyzed, which are the phase-match of femtosecond pulse multi-wavelength components of fundamental wave in frequency domain and the group-velocity-match of fundamental pulse and second harmonic pulse in time domain. It is found that the spectral width can keep constant in the propagation when the phase-match of multi-wavelength components is satisfied. However, the spectral width will gradually become narrower with the increase of the propagation distance when the phase-match of the center wavelength is satisfied only.
参考文献

[1] 彭天铎, 刘博文, 张巨慧, 等. 基于全固光子带隙光纤中自频移孤子的相干合成产生少周期飞秒激光脉冲[J]. 中国激光, 2015, 42(7): 0702006.

    Peng Tianduo, Liu Bowen, Zhang Juhui, et al. Generation of few-cycle femtosecond pulses via coherent synthesis based on self-frequency-shifted solitons in all-solid-state photonic bandgap fiber[J]. Chinese J Lasers, 2015, 42(7): 0702006.

[2] 任 军, 吴思达, 程昭晨, 等. 基于氧化石墨烯与半导体可饱和吸收镜的锁模飞秒掺铒光纤激光器[J]. 中国激光, 2015, 42(6): 0602013.

    Ren Jun, Wu Sida, Cheng Zhaochen, et al. Mode-locked femtosecond erbium-doped fiber laser based on graphene oxide versus semiconductor saturable absorber mirror[J]. Chinese J Lasers, 2015, 42(6): 0602013.

[3] Wang X, Yan L, Si J, et al. High-frame-rate observation of single femtosecond laser pulse propagation in fused silica using an echelon and optical polarigraphy technique[J]. Appl Opt, 2014, 53(36): 8395-8399.

[4] Yu H, Wang X, Zhang H, et al. Linearly-polarized fiber-integrated nonlinear CPA system for high-average-power femtosecond pulses generation at 1. 06 μm[J]. J Lightwave Technol, 2016, 34(18): 4271-4277.

[5] 杨春晖, 孙 亮, 冷雪松, 等. 光折变非线性光学材料铌酸锂晶体[M]. 北京: 科学出版社, 2009: 237.

    Yang Chunhui, Sun Liang, Leng Xuesong, et al. Photorefractive nonlinear optical material lithium niobate crystal[M]. Beijing: Science Press, 2009: 237.

[6] Mizuuchi K, Yamamoto K, Kato M, et al. Broadening of the phase-matching bandwidth in quasi-phase-matched second-harmonic generation[J]. IEEE J Quantum Electron, 1994, 30(7): 1596-1604.

[7] Bortz M L, Fujimura M, Fejer M M. Increased acceptance bandwidth for quasi-phase-matched second harmonic generation in LiNbO3 waveguides[J]. Electron Lett, 1994, 30(1): 34-35.

[8] Fujioka N, Ashihara S, Ono H, et al. Group-velocity-matched noncollinear second-harmonic generation in quasi-phase matching[J]. J Opt Soc Am B, 2005, 22(6): 1283-1289.

[9] Das R, Thyagarajan K. Broadening of the phase-matching bandwidth in quasi-phase-matched second-harmonic generation using GaN-based bragg reflection waveguide[J]. Opt Lett, 2007, 32(21): 3128-3130.

[10] Chen L, Lu S, Wang Y, et al. Bandwidth broadening and spectrum tailoring of second-harmonic generation in transversely nonuniform quasi-phase-matching gratings with spatial spectral dispersion[J]. Optik, 2015, 126: 5149-5153.

[11] Yu N E, Ro J H, Cha M, et al. Broadband quasi-phase-matched second-harmonic generation in MgO-doped periodically poled LiNbO3 at the communications band[J]. Opt Lett, 2002, 27(12): 1046-1048.

[12] Yu N E, Kurimura S, Kitamura K, et al. Efficient frequency doubling of a femtosecond pulse with simultaneous group-velocity matching and quasi phase matching in periodically poled, MgO-doped lithium niobate[J]. Appl Phys Lett, 2003, 82(20): 3388-3390.

[13] Zhang J, Chen Y, Lu F, et al. Effect of MgO doping of periodically poled lithium niobate on second-harmonic generation of femtosecond laser pulses[J]. Appl Opt, 2007, 46(32): 7792-7796.

[14] Zhang J, Chen Y, Lu F, et al. Flexible wavelength conversion via cascaded second order nonlinearity using broadband SHG in MgO-doped PPLN[J]. Opt Express, 2008, 16(10): 6957-6962.

[15] Zheng Z, Weiner A M, Parameswaran K R, et al. Femtosecond second-harmonic generation in periodically poled lithium niobate waveguides with simultaneous strong pump depletion and group-velocity walk-off[J]. J Opt Soc Am B, 2002, 19(4): 839-848.

[16] Zelmon D E, Small D L, Jundt D. Infrared corrected Sellmeier coefficients for congruently grown lithium niobate and 5 mol.% magnesium oxide-doped lithium niobate[J]. J Opt Soc Am B, 1997, 14(12): 3319-3322.

[17] 姜宝华, 黄章超, 吕福云. 飞秒激光脉冲倍频特性的数值模拟[J]. 量子电子学报, 2013, 30(4): 466-472.

    Jiang Baohua, Huang Zhangchao, Lü Fuyun. Numerical simulation of frequency doubling of femtosecond pulses[J]. Chinese Journal of Quantum Electronics, 2013, 30(4): 466-472.

黄章超, 张文定, 林洪沂, 许英朝, 沈汉鑫, 阮剑剑, 孙栋, 王衡, 朱文章. GW/cm2量级飞秒脉冲倍频的宽谱谐波产生[J]. 光学学报, 2017, 37(3): 0332001. Huang Zhangchao, Zhang Wending, Lin Hongyi, Xu Yingchao, Shen Hanxin, Ruan Jianjian, Sun Dong, Wang Heng, Zhu Wenzhang. Broadband Second Harmonic Generation of Femtosecond Pulses at Magnitude of GW/cm2[J]. Acta Optica Sinica, 2017, 37(3): 0332001.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!