光学学报, 2017, 37 (1): 0112004, 网络出版: 2017-01-13   

高热稳定性高精细度光学法布里珀罗腔系统

Optical Fabry-Pérot Cavity System with High Thermal Stability and High Finesse
作者单位
山西大学光电研究所量子光学与光量子器件国家重点实验室极端光学协同创新中心, 山西 太原 030006
摘要
设计了由超低膨胀玻璃材料制作的光学法布里珀罗(F-P)腔及其真空控温系统, 通过双重控温系统实现了F-P腔在环境温度为10~40 ℃范围的精确控制, 该系统在 24 h内的温度波动约为±0.004 ℃。通过分析F-P腔的共振频率和铯原子饱和吸收谱, 获得了F-P腔的共振频率和腔体材料膨胀系数随温度的变化。通过对测得的数据进行拟合, 可以精确确定零膨胀温度为29.286±0.057 ℃。所提出的温度控制系统有望获得热稳定度为3.494×10-14的光学频率标准。
Abstract
An optical Fabry-Pérot cavity composed of ultra-low expansion glass material and a vacuum temperature control system are designed. The temperature of the Fabry-Pérot cavity can be precisely tuned from 10 ℃ to 40 ℃ when we use the double temperature control system, and the temperature fluctuation of the system is within ±0.004 ℃ in 24 h. The variations in resonant frequency of the F-P cavity and expansion coefficient of the cavity material with temperature are measured when we analyze the F-P cavity resonant frequency and the saturated absorption spectrum of Cs atom. The zero expansion temperature (29.286±0.057 ℃) is determined accurately when we fit the measured data. An optical frequency standard with thermal stability of 3.494×10-14 is expected to obtained by the proposed temperature control system.
参考文献

[1] Rafac R J, Young B C, Beall J A, et al. Sub-dekahertz ultraviolet spectroscopy of 199 Hg+[J]. Physical Review Letters, 2000, 85(12): 2462-2465.

[2] Jiang Y Y, Ludlow A D, Lemke N D, et al. Making optical atomic clocks more stable with 10-16 level laser stabilization[J]. Nature Photonics, 2011, 5(3): 158-161.

[3] Saffman M, Walker T G, Mlmer K. Quantum information with Rydberg atoms[J]. Reviews of Modern Physics, 2010, 82(3): 2313-2363.

[4] Ludlow A D, Huang X, Notcutt M, et al. Compact, thermal-noise-limited optical cavity for diode laser stabilization at 1× 10-15[J]. Optics Letters, 2007, 32(6): 641-643.

[5] Millo J, Magalhaes D V, Mandache C, et al. Ultrastable lasers based on vibration insensitive cavities[J]. Physical Review A, 2009, 79(5): 053829.

[6] Numata K, Kemery A, Camp J. Thermal-noise limit in the frequency stabilization of lasers with rigid cavities[J]. Physical Review Letters, 2004, 93(25): 250602.

[7] Kimble H J, Lev B L, Ye J. Optical interferometers with reduced sensitivity to thermal noise[J]. Physical Review Letters, 2008, 101(26): 260602.

[8] Notcutt M, Ma L S, Ludlow A D, et al. Contribution of thermal noise to frequency stability of rigid optical cavity via Hertz-linewidth lasers[J]. Physical Review A, 2006, 73(3): 031804.

[9] Webster S A, Oxborrow M, Pugla S, et al. Thermal-noise-limited optical cavity[J]. Physical Review A, 2008, 77(3): 033847.

[10] Swallows M D, Martin M J, Bishof M, et al. Operating a 87 Sr optical lattice clock with high precision and at high density[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2012, 59(3): 416-425.

[11] Ludlow A D, Boyd M M, Ye J, et al. Optical atomic clocks[J]. Reviews of Modern Physics, 2015, 87(2): 637-651.

[12] 田 晓, 徐琴芳, 尹默娟, 等. 国家授时中心锶原子光钟的实验研制进展[J]. 光学学报, 2015, 35 (s1): s102001.

    Tian Xiao, Xu Qinfang, Yin Mojuan, et al. Experiment study on optical lattice clock of strontium at NTSC[J]. Acta Optica Sinica, 2015, 35(s1): s102001.

[13] 曹学敏, 杨旭东, 李淑静, 等. 温控共振频率可调谐窄带F-P干涉滤波器[J]. 量子光学学报, 2008, 14(1): 72-76.

    Cao Xuemin, Yang Xudong, Li Shujing, et al. A resonant frequency tunable and narrowband F-P interference filter controlled by the temperature[J]. Acta Sinica Quantum Optica, 2008, 14(1): 72-76.

[14] Dai X, Jiang Y, Hang C, et al. Thermal analysis of optical reference cavities for low sensitivity to environmental temperature fluctuations[J]. Optics Express, 2015, 23(4): 5134-5146.

[15] 陈 龙, 张林波, 许冠军, 等. 激光稳频中光学参考腔温度控制研究[J]. 时间频率学报, 2015, 38(3): 139-146.

    Chen Long, Zhang Linbo, Xu Guanjun, et al. Research on temperature control of optical cavity for laser frequency stabilization[J]. Journal of Time and Frequency, 2015, 38(3): 139-146.

[16] Rempe G, Lalezari R, Thompson R J, et al. Measurement of ultralow losses in an optical interferometer[J]. Optics Letters, 1992, 17(5): 363-365.

[17] Steck D A. Cesium D line data[J]. [2016-08-01]. http://steck.us/alkalidata/cesiumnumbers.1.6.pdf.

[18] Legero T, Kessler T, Sterr U. Tuning the thermal expansion properties of optical reference cavities with fused silica mirrors[J]. JOSA B, 2010, 27(5): 914-919.

王兴昌, 李少康, 李刚, 张天才. 高热稳定性高精细度光学法布里珀罗腔系统[J]. 光学学报, 2017, 37(1): 0112004. Wang Xingchang, Li Shaokang, Li Gang, Zhang Tiancai. Optical Fabry-Pérot Cavity System with High Thermal Stability and High Finesse[J]. Acta Optica Sinica, 2017, 37(1): 0112004.

本文已被 2 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!