光子学报, 2018, 47 (5): 0516005, 网络出版: 2018-09-07   

不同光功率激励下石墨烯的太赫兹波吸收特性

Characterizing the Absorption of Terahertz Wave by Graphene under the Excitation of Different Luminous Power
张文涛 1,2,*李赣 1,2占平平 1,2李跃文 1,2张玉婷 1,2
作者单位
1 桂林电子科技大学 电子工程与自动化学院, 广西 桂林 541004
2 广西光电信息处理重点实验室, 广西 桂林 541004
引用该论文

张文涛, 李赣, 占平平, 李跃文, 张玉婷. 不同光功率激励下石墨烯的太赫兹波吸收特性[J]. 光子学报, 2018, 47(5): 0516005.

ZHANG Wen-tao, LI Gan, ZHAN Ping-ping, LI Yue-wen, ZHANG Yu-ting. Characterizing the Absorption of Terahertz Wave by Graphene under the Excitation of Different Luminous Power[J]. ACTA PHOTONICA SINICA, 2018, 47(5): 0516005.

参考文献

[1] HU Xiao-yan. Research progress and trends of terahertz technology from the view of photonics[J]. Laser and Infrared, 2015, 45(7): 740-748.

[2] LIU Chao, YANG Ming, LIU Zhi-gang. Development and application in near-terahertz power devices[J]. Journal of Microwaves, 2015(s1): 6-9.

[3] DHILLON S S, VITIELLO M S, LINFIELD E H, et al. The 2017 terahertz science and technology roadmap[J]. Journal of Physics D Applied Physics, 2017, 50(4): 043001.

[4] YANG Zhen-gang, ZHAO Bi-qiang, LIU Jin-song, et al. Nondestructive inspection with terahertz waves[J]. Physics, 2013, 42(10): 708-711

[5] KAWASE K, OGAWA Y, WATANABE Y, et al. Non-destructive terahertz imaging of illicit drugs using spectral fingerprints[J]. Optics Express, 2003, 11(20): 2549-2554.

[6] WALLACE V P, FITZGERALD A J, SHANKAR S, et al. Terahertz pulsed imaging of basal cell carcinoma ex vivo and in vivo[J]. British Journal of Dermatology, 2015, 151(2): 424-432.

[7] NIE Jun-yang, ZHANG Wen-tao, XIONG Xian-ming, et al. Recognition of transgenic soybeans based on terahertz spectroscopy and PCA-BPN network[J]. Acta Photonica Sinica, 2016, 45(5): 161-167.

[8] ZHAO Guo-zhong, SHEN Yan-chun, LIU Ying. Application of terahertz technology in military and security field[J]. Journal of Electronic Measurement and Instrumentation, 2015(8): 1097-1101.

[9] SEEDS A J, SHAMS H, FICE M J, et al. Terahertz photonics for wireless communications[J]. Journal of Lightwave Technology, 2015, 33(3): 579-587.

[10] HEBLING J, YEH K L, HOFFMANN M C, et al. Generation of high-power terahertz pulses by tilted-pulse-front excitation and their application possibilities[J]. Journal of the Optical Society of America B, 2015, 25(7): 1266-1277.

[11] KAN E, REN H, WU F,et al. Why the band gap of graphene is tunable on hexagonal boron nitride[J]. Journal of Physical Chemistry C, 2012, 116(4): 3142-3146.

[12] RYZHII V, RYZHII M, MITIN V,et al. Terahertz photomixing using plasma resonances in double-graphene layer structures[J]. Journal of Applied Physics, 2013, 113(17): 1308-103.

[13] RENO J L, KHAANAL S, KUNMAR S. 2.1 THz quantum-cascade laser operating up to 144 K based on a scattering-assisted injection design[J].Optics Express, 2015, 23(15): 19689.

[14] SU Juan, CHENG Bin-bin, DENG Xian-jin. Recent progress on graphene-based terahertz optoelectronics[J]. Information and Electronic Engineering, 2015, 13(3): 511-519.

[15] CHEN Ying-liang, FENG Xiao-bo, HOU De-dong. Optical absorptions in monolayer and bilayer graphene[J]. Acta Physica Sinica, 2013, 62(18): 416-421.

[16] SENSALE-RODRIGUEZ B, YAN R, RAFIQUE S,et al. Extraordinary control of terahertz beam reflectance in graphene electro-absorption modulators[J]. Nano Letters, 2016, 12(9): 4518-4522.

[17] AHMADIVAND A, SINHA R, KARABIYIK M,et al. Tunable THz wave absorption by graphene-assisted plasmonic metasurfaces based on metallic split ring resonators[J]. Journal of Nanoparticle Research, 2017, 19(1): 3.

[18] ZOU Yi-xuan, DONG Lian-he, XIA Liang-ping,et al. Graphene electrically modulating terahertz transmission enhanced by arm type metal mesh structure[J]. Acta Photonica Sinica, 2018, 47(2): 0223002.

[19] HABERER D, VVALIKH D V, TAIOLI S, et al. Tunable band gap in hydrogenated quasi-free-standing graphene[J]. Nano Letters, 2015, 10(9): 3360-3366.

[20] CHEN Tao, LI Zhi, MO Wei.Identification of terahertz absorption spectra of explosives based on fuzzy pattern recognition[J]. Chinese Journal of Scientific Instrument, 2012, 33(11): 2480-2486.

[21] QI M, REN Z, JIAO Y, et al. Hydrogen kinetics on scalable graphene growth by atmospheric pressure chemical vapor deposition with acetylene[J]. Journal of Physical Chemistry C, 2013, 117(27): 14348–14353.

[22] DOMEY T D, BARANIUK R G, MITTLEMAN D M. Material parameter estimation with terahertz time-domain spectroscopy[J]. Journal of the Optical Society of America A Optics Image Science and Vision, 2001, 18(7): 1562-71.

[23] LI T, LUO L, HUOALO M, et al. Femtosecond population inversion and stimulated emission of dense Dirac fermions in graphene.[J]. Physical Review Letters, 2012, 108(16): 167401.

[24] ZHOU Yi-xuan, ZHENG Xin-liang, XU Xin-long, et al. Study on terahertz conductivity of stacked multilayer graphene[J]. China Sciencepaper, 2014(6): 673-676.

[25] MAENG I, LIM S, CHAE S J, et al. Gate-controlled nonlinear conductivity of dirac fermion in graphene field-effect transistors measured by terahertz time-domain spectroscopy[J]. Nano Letters, 2012, 12(2): 551.

张文涛, 李赣, 占平平, 李跃文, 张玉婷. 不同光功率激励下石墨烯的太赫兹波吸收特性[J]. 光子学报, 2018, 47(5): 0516005. ZHANG Wen-tao, LI Gan, ZHAN Ping-ping, LI Yue-wen, ZHANG Yu-ting. Characterizing the Absorption of Terahertz Wave by Graphene under the Excitation of Different Luminous Power[J]. ACTA PHOTONICA SINICA, 2018, 47(5): 0516005.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!