光子学报, 2018, 47 (5): 0516005, 网络出版: 2018-09-07   

不同光功率激励下石墨烯的太赫兹波吸收特性

Characterizing the Absorption of Terahertz Wave by Graphene under the Excitation of Different Luminous Power
张文涛 1,2,*李赣 1,2占平平 1,2李跃文 1,2张玉婷 1,2
作者单位
1 桂林电子科技大学 电子工程与自动化学院, 广西 桂林 541004
2 广西光电信息处理重点实验室, 广西 桂林 541004
摘要
基于太赫兹时域光谱系统和德鲁德模型, 测量并分析了少层石墨烯在600 nm CW红光和两种衬底下的透过率及电导率.结果发现, 高阻硅衬底的石墨烯样品在光场激励下对太赫兹信号的吸收显著增强, 而PET(Polyethylene terephthalate)衬底的石墨烯样品在光场激励下对太赫兹信号的吸收则有微弱减少.相较于无激励光场条件, 在0.5 THz处, 高阻硅衬底石墨烯的电导率提升了7倍, PET衬底石墨烯的电导率下降了23%.同时实验也验证了在太赫兹波段少层石墨烯的电导为各层石墨烯电导的线性叠加.
Abstract
The transmissivity and conductivity of the few-layer graphene with 600 nm CW laser and two substrates are measured and analyzed, based on terahertz time-domain spectroscopy and the Drude model. In this study, the absorption of terahertz signal is obviously enhanced through the graphene on high-resistivity silicon or the absorption of terahertz signal is slightly decreased through the graphene on PET (Polyethylene terephthalate) with the excitation of external laser. At 0.5 THz, the conductivity of the graphene on high-resistivity silicon is increased by 7 times or the conductivity of the graphene on PET is felled to 77%, compared to that without external laser. Meanwhile the experiments verify that the conductance in the few-layer graphene appears as the linear superposition of per layer among the THz waveband.
参考文献

[1] HU Xiao-yan. Research progress and trends of terahertz technology from the view of photonics[J]. Laser and Infrared, 2015, 45(7): 740-748.

[2] LIU Chao, YANG Ming, LIU Zhi-gang. Development and application in near-terahertz power devices[J]. Journal of Microwaves, 2015(s1): 6-9.

[3] DHILLON S S, VITIELLO M S, LINFIELD E H, et al. The 2017 terahertz science and technology roadmap[J]. Journal of Physics D Applied Physics, 2017, 50(4): 043001.

[4] YANG Zhen-gang, ZHAO Bi-qiang, LIU Jin-song, et al. Nondestructive inspection with terahertz waves[J]. Physics, 2013, 42(10): 708-711

[5] KAWASE K, OGAWA Y, WATANABE Y, et al. Non-destructive terahertz imaging of illicit drugs using spectral fingerprints[J]. Optics Express, 2003, 11(20): 2549-2554.

[6] WALLACE V P, FITZGERALD A J, SHANKAR S, et al. Terahertz pulsed imaging of basal cell carcinoma ex vivo and in vivo[J]. British Journal of Dermatology, 2015, 151(2): 424-432.

[7] NIE Jun-yang, ZHANG Wen-tao, XIONG Xian-ming, et al. Recognition of transgenic soybeans based on terahertz spectroscopy and PCA-BPN network[J]. Acta Photonica Sinica, 2016, 45(5): 161-167.

[8] ZHAO Guo-zhong, SHEN Yan-chun, LIU Ying. Application of terahertz technology in military and security field[J]. Journal of Electronic Measurement and Instrumentation, 2015(8): 1097-1101.

[9] SEEDS A J, SHAMS H, FICE M J, et al. Terahertz photonics for wireless communications[J]. Journal of Lightwave Technology, 2015, 33(3): 579-587.

[10] HEBLING J, YEH K L, HOFFMANN M C, et al. Generation of high-power terahertz pulses by tilted-pulse-front excitation and their application possibilities[J]. Journal of the Optical Society of America B, 2015, 25(7): 1266-1277.

[11] KAN E, REN H, WU F,et al. Why the band gap of graphene is tunable on hexagonal boron nitride[J]. Journal of Physical Chemistry C, 2012, 116(4): 3142-3146.

[12] RYZHII V, RYZHII M, MITIN V,et al. Terahertz photomixing using plasma resonances in double-graphene layer structures[J]. Journal of Applied Physics, 2013, 113(17): 1308-103.

[13] RENO J L, KHAANAL S, KUNMAR S. 2.1 THz quantum-cascade laser operating up to 144 K based on a scattering-assisted injection design[J].Optics Express, 2015, 23(15): 19689.

[14] SU Juan, CHENG Bin-bin, DENG Xian-jin. Recent progress on graphene-based terahertz optoelectronics[J]. Information and Electronic Engineering, 2015, 13(3): 511-519.

[15] CHEN Ying-liang, FENG Xiao-bo, HOU De-dong. Optical absorptions in monolayer and bilayer graphene[J]. Acta Physica Sinica, 2013, 62(18): 416-421.

[16] SENSALE-RODRIGUEZ B, YAN R, RAFIQUE S,et al. Extraordinary control of terahertz beam reflectance in graphene electro-absorption modulators[J]. Nano Letters, 2016, 12(9): 4518-4522.

[17] AHMADIVAND A, SINHA R, KARABIYIK M,et al. Tunable THz wave absorption by graphene-assisted plasmonic metasurfaces based on metallic split ring resonators[J]. Journal of Nanoparticle Research, 2017, 19(1): 3.

[18] ZOU Yi-xuan, DONG Lian-he, XIA Liang-ping,et al. Graphene electrically modulating terahertz transmission enhanced by arm type metal mesh structure[J]. Acta Photonica Sinica, 2018, 47(2): 0223002.

[19] HABERER D, VVALIKH D V, TAIOLI S, et al. Tunable band gap in hydrogenated quasi-free-standing graphene[J]. Nano Letters, 2015, 10(9): 3360-3366.

[20] CHEN Tao, LI Zhi, MO Wei.Identification of terahertz absorption spectra of explosives based on fuzzy pattern recognition[J]. Chinese Journal of Scientific Instrument, 2012, 33(11): 2480-2486.

[21] QI M, REN Z, JIAO Y, et al. Hydrogen kinetics on scalable graphene growth by atmospheric pressure chemical vapor deposition with acetylene[J]. Journal of Physical Chemistry C, 2013, 117(27): 14348–14353.

[22] DOMEY T D, BARANIUK R G, MITTLEMAN D M. Material parameter estimation with terahertz time-domain spectroscopy[J]. Journal of the Optical Society of America A Optics Image Science and Vision, 2001, 18(7): 1562-71.

[23] LI T, LUO L, HUOALO M, et al. Femtosecond population inversion and stimulated emission of dense Dirac fermions in graphene.[J]. Physical Review Letters, 2012, 108(16): 167401.

[24] ZHOU Yi-xuan, ZHENG Xin-liang, XU Xin-long, et al. Study on terahertz conductivity of stacked multilayer graphene[J]. China Sciencepaper, 2014(6): 673-676.

[25] MAENG I, LIM S, CHAE S J, et al. Gate-controlled nonlinear conductivity of dirac fermion in graphene field-effect transistors measured by terahertz time-domain spectroscopy[J]. Nano Letters, 2012, 12(2): 551.

张文涛, 李赣, 占平平, 李跃文, 张玉婷. 不同光功率激励下石墨烯的太赫兹波吸收特性[J]. 光子学报, 2018, 47(5): 0516005. ZHANG Wen-tao, LI Gan, ZHAN Ping-ping, LI Yue-wen, ZHANG Yu-ting. Characterizing the Absorption of Terahertz Wave by Graphene under the Excitation of Different Luminous Power[J]. ACTA PHOTONICA SINICA, 2018, 47(5): 0516005.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!