激光与光电子学进展, 2015, 52 (2): 021401, 网络出版: 2016-03-17   

激光等离子体中的自生磁场和质子加速 下载: 881次

Self-Magnetic Field and Proton Acceleration in a Laser Plasma Interaction
作者单位
新疆大学物理科学与技术学院, 新疆 乌鲁木齐 830046
摘要
选用不同类型的等离子体薄靶,用二维particle-in-cell(PIC)粒子模拟方法系统研究了超强激光脉冲与等离子体薄靶相互作用中产生的自生磁场和质子加速行为,结果发现:当功率密度为1020 W/cm2的超强激光与等离子体薄靶相互作用时,由于等离子靶面所产生的自生磁场作用使产生的质子分布呈现空间定向发射,发射的方向和高能质子能量与等离子体靶面密切相关,能量越高发散角越小,而质子加速越好。在圆形薄靶中质子最大能量达到41.1 MeV。研究结果对惯性纳米聚变快点火和肿瘤治疗等方面具有重要的应用价值。
Abstract
By selecting different types of thin plasma targets and applying two-dimensional particle-in-cell (PIC) simulation system, the acceleration behaviour of proton in the self-generated magnetic field induced by ultra intense laser and the thin plasma target interaction are studied. The results show that when the power density of interaction of intense laser is 1020 W/cm2, due to the self-generated magnetic field produced plasma target, the proton distribution exhibites space directional emission; the emission direction and the energy of the high energy proton are closely related to the plasma target surface. The higher proton energy, the smaller the divergence angle and the better proton accelerator effect are. In the round thin plasma target, the proton maximum energy reaches 41.1 MeV. This result has important application value for the inertial nano fusion fast ignition and tumour therapy.
参考文献

[1] 刘占军, 朱少平, 曹莉华, 等. 利用一维Vlasov 和Maxwell 方程模拟激光等离子体相互作用[J]. 物理学报, 2007, 56(12): 7084-7089.

    Liu Zhanjun, Zhu Shaoping, Cao Lihua, et al.. Study of laser plasma interactions using Vlasov and Maxwell equations[J]. Acta Physica Sinica, 2007, 56(12): 7084-7089.

[2] 蔡达锋, 王利娟, 王剑, 等. 超短超强激光-等离子体中自生磁场的研究[J]. 原子与分子物理学报, 2009, 26(3): 65-69.

    Cai Dafeng, Wang Lijuan, Wang Jian, et al.. Self-generation magnetic field in the ultrashort ultrahigh laser-produced plasma research [J]. J Atomic and Molecular Physics, 2009, 26(3): 65-69.

[3] 沈百飞, 张晓梅. 高能量密度下激光粒子加速等研究的最新进展和展望[J]. 激光与光电子学进展, 2010, 47(9): 093201.

    Shen Baifei, Zhang Xiaomei. Latest progress and prospect of laser induced particle acceleration under high energy density conditions [J]. Laser & Optoelectronics Progress, 2010, 47(9): 093201.

[4] 阿不都热苏力, 帕尔哈提, 王倩. 超强激光等离子体相互作用中的自生磁场与能量运输[J]. 强激光与粒子束, 2011, 23(12): 3223-3228.

    A Abudurexiti, P Tuniyazi, Wang Qian. Self-generated magnetic fields and energy transport by ultra-intense laserplasma interaction [J]. High Power Laser and Particle Beams, 2011, 23(12): 3223-3228.

[5] 李玉同. 飞秒激光等离子体光学诊断和自生磁场实验研究[D].北京: 中国工程物理研究院, 2001.

    Li Yutong. Experimental Studies of Axial Magnetic Fields and Optical Diagnostic of Femtosecond Laser Plasmas [D]. Beijing: China Academy of Engineering Physics, 2001.

[6] 郑春阳, 刘占军, 李纪伟, 等. 无碰撞等离子体中电子束流不稳定性的时空演化研究[J]. 物理学报, 2005, 54(5): 2138-2146.

    Zheng Chunyang, Liu Zhanjun, Li Jiwei, et al.. Spatio temporal evolution of electron beam instability in collisionless plasmas [J]. Acta Physica Sinica, 2005, 54(5): 2138-2146.

[7] J Fuchs, G Malka, J C Adam, et al.. Dynamics of subpicosecond relativistic laser pulse self-channeling in an underdense preformed plasma [J]. Phys Rev Lett, 1998, 80(8): 1658-1661.

[8] M Borghesi, A J Mackinnon, R Gaillard, et al.. Large quasistatic magnetic fields generated by a relativistically intense laser pulse propagating in preionized plasma [J]. Phys Rev Lett, 1998, 80(23): 5137-5141.

[9] M Tatarakis, A Gopal, I Watts, et al.. Measurements of ultrastrong magnetic fields during relativistic laser plasma interactions [J]. Physics of Plasmas, 2002, 9(4): 2244-2250.

[10] Z Najmudin, M Tatarakis, A Pukhov, et al.. Meaurements of the inverse faraday effect from relativitic laser interactions with an underdense plasma [J]. Phys Rev Lett, 2001, 87(21): 215004.

[11] S C Wilks, A B London, T E Cowan, et al.. Energetic proton generation in ultra-intense laser-solid interactions [J]. Phys Plasmas, 2001, 8(2): 542-549.

[12] M Kaluza, J Schreiber, M I K Santala, et al.. Influence of the laser prepulse on proton acceleration in thin-foil experiments [J]. Phys Rev Lett, 2004, 93(4): 045003.

[13] A Pukhov. Three-dimensional simulations of ion acceleration from a foil irradiated by a short-pulse laser [J]. Phys Rev Lett, 2001, 86(16): 3562-3565.

[14] Y Sentoku, K Mima, Sheng Zhengming, et al.. Three-dimensional particle-in-cell simulations of energetic electron generation and transport with relativistic laser pulses in overdense plasmas [J]. Phys Rev E, 2002, 65(5): 046408.

[15] 银燕, 常文蔚, 马燕云, 等. 超短脉冲超强激光与固体靶相互作用中高能离子的产生[J]. 强激光与粒子束, 2004, 16(6): 741-744.

    Yin Yan, Chang Wenwei, Ma Yanyun, et al.. Energetic ions generation in the interaction between ultrashort ultraintense laser pulse and solid target [J]. High Power Laser and Particle Beams,2004, 16(6): 741-744.

[16] Li Yutong, Zhang Jie, Lu Xin, et al.. Forward dynamics of water plasmas generated by femtosecond laser pulses [J]. Phys Plasmas, 2002, 9(9): 4028-4031.

[17] A Abudurexiti, T Okada, S Ishikawa. A mechanism for self-generated magnetic fields in the interaction of ultra-intense laser pulses with thin plasma targets [J]. Physics of Plasmas, 2009, 75(1): 91-98.

[18] T Okada, K Ogawa. Saturated magnetic field for weibel instability in ultraintense laser-plasma interactions [J]. Journal of Plasma Physics, 2007, 14(7): 072702.

[19] 阿不都热苏力, 艾尔肯·扎克尔, 帕尔哈提·吐尼亚孜. 激光等离子体密度标长对高能质子加速的影响[J]. 激光与光电子学进展, 2011, 48(8): 083201.

    A Abudurexiti, A Zaker, P Tuniyazi. Effect of plasma density scale length on energetic protons generation in laserplasma interaction [J]. Laser & Optoelectronics Progress, 2011, 48(8): 083201.

阿不力克木, 阿不都热苏力. 激光等离子体中的自生磁场和质子加速[J]. 激光与光电子学进展, 2015, 52(2): 021401. A Abulikemu, A Abudurexiti. Self-Magnetic Field and Proton Acceleration in a Laser Plasma Interaction[J]. Laser & Optoelectronics Progress, 2015, 52(2): 021401.

本文已被 3 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!