袁鹏 1陶弢 1,*郑坚 1,2
作者单位
摘要
1 中国科学技术大学核科学技术学院等离子体物理与聚变工程系,安徽 合肥 230026
2 IFSA 联合创新中心,上海交通大学,上海 200240
提出了一种紧凑型偏振干涉仪,其能够在单一记录设备上同时获得等离子体干涉、偏振以及阴影图,通过单发测量即可求解磁感应强度。通过理论分析和参数仿真,确定了干涉仪的最优光学设置,明确了干涉仪的误差来源。干涉仪被成功应用于激光固体靶自生磁场的实验中,可成功测量到几百微米空间尺度、10 T量级的磁场。借助磁流体模拟与虚拟仪器建模,得到了磁场的合成诊断图像,模拟合成结果与实验结果显示出令人满意的一致性。这种紧凑型偏振干涉仪有望提升大激光装置的实验效率,也可以用于提高小激光装置的灵活性,能够有效降低磁场诊断的成本和风险。
测量 偏振干涉仪 自生磁场 激光等离子体 等离子体诊断 
光学学报
2023, 43(9): 0912002
作者单位
摘要
中国矿业大学(北京)理学院,北京 100083

在激光等离子体相互作用中,各种不同的物理机制将会激发产生强度高达100 T量级的自生磁场。针对前人开展的纳秒激光与等离子体相互作用中自生磁场的质子成像诊断实验,通过分析实验结果并提取磁流体力学模拟中所呈现出的磁场基本特征,对磁场形式进行了假设,并应用蒙特卡罗粒子输运程序FLUKA对质子成像过程进行了大量模拟,得到了与实验结果吻合度较高的磁场分布。通过比较发现:FLUKA模拟得到的磁场的峰值强度以及峰值强度随时间的演化规律与前人LASNEX模拟结果基本吻合,而磁场分布范围大于LASNEX模拟中的结果,这可能是由于磁扩散的影响和欠稠密等离子体的存在。

激光器 质子成像 自生磁场 激光等离子体相互作用 
中国激光
2022, 49(24): 2401001
作者单位
摘要
新疆大学物理科学与技术学院, 新疆 乌鲁木齐 830046
利用理论分析和数值模拟方法,对超短超强激光脉冲与高密度等离子体相互作用中电磁不稳定和自生磁场空间分布的时间演化过程进行了研究。数值模拟结果表明:在线性超强激光的作用下,强激光照射等离子体薄靶时电子做无规则热运动,但由于等离子体临界面上激发的电磁不稳定性,电磁不稳定性随时间的增强和激光功率的逐渐深入到等离子体内部会导致强电流的形成,其结果使等离子体表面处产生自生磁场。对这些过程的细致研究对电磁不稳定性和自生磁场等过程有重要意义。
超强激光与等离子体相互作用 自生磁场 电磁不稳定性 粒子模拟 interaction of ultra-intense laser pulse with plas self generated magnetic field electromagnetic instability particle-in-cell method 
光学与光电技术
2017, 15(1): 64
作者单位
摘要
新疆大学物理科学与技术学院, 新疆 乌鲁木齐 830046
选用不同类型的等离子体薄靶,用二维particle-in-cell(PIC)粒子模拟方法系统研究了超强激光脉冲与等离子体薄靶相互作用中产生的自生磁场和质子加速行为,结果发现:当功率密度为1020 W/cm2的超强激光与等离子体薄靶相互作用时,由于等离子靶面所产生的自生磁场作用使产生的质子分布呈现空间定向发射,发射的方向和高能质子能量与等离子体靶面密切相关,能量越高发散角越小,而质子加速越好。在圆形薄靶中质子最大能量达到41.1 MeV。研究结果对惯性纳米聚变快点火和肿瘤治疗等方面具有重要的应用价值。
超快光学 超强激光 平板靶 圆形靶 数值模拟 自生磁场 
激光与光电子学进展
2015, 52(2): 021401
作者单位
摘要
郑州工业应用技术学院信息工程学院, 河南 新郑 451150
应用多光子非线性Compton散射模型和数值计算方法,研究了Compton散射对超强激光与等离子体作用中能量输运的影响,提出了将Compton散射光和入射超强光作为电子能量输运的新机制,给出了电子热传导新模型和能量输运数值计算结果.结果表明:散射使等离子体中Weibel不稳定性和自生磁场增强效应导致耦合光传输方向的电子密度显著减小,更多激光能量以热流形式分布在横向方向.散射使电子吸收能量的时间缩短和自生磁场线性阶段最大增长率增大效应导致等离子体表面处沿耦合激光横向方向的热流几乎被完全限制,电子在激光传输方向的能量显著增加.
超强激光 激光等离子体 自生磁场 耦合 Weibel不稳定性 多光子非线性Compton散射 extra-intensity laser laser-plasma self-genetic magnetic field coupling Weible instability multi-photon nonlinear Compton scattering 
光学技术
2015, 41(1): 22
作者单位
摘要
新疆大学 物理科学与技术学院, 乌鲁木齐 830046
采用相对论电磁粒子模拟程序研究了飞秒激光等离子体相互作用中产生的电流密度、电场和自生磁场的发展演化过程。介绍了电子的非局域热输运的基本特性以及激光加热过程中温度烧蚀前沿稠密等离子体子区的预热效应、临界面附近的限流效应,以及冕区的反扩散与限流效应,得到了经典Spitzer-Harm理论描述的电子热传导随自生磁场的演化情形。数值模拟表明: 在线性强激光作用下,由于电子初始时刻的无规则热运动,在等离子体上激发电磁不稳定性,而不稳定性激发的强电磁场使电子束在非常短的距离内沉积能量,同时对在激光有质动力推开电子时形成的超热电子能量输运产生抑制作用。
电流密度 电场 磁场 饱和自生磁场 电子热传导 粒子模拟法 current density electric field magnetic field saturated magnetic field electron thermal conduction particle-in-cell method 
强激光与粒子束
2014, 26(9): 092007
作者单位
摘要
新疆大学物理科学与技术学院, 新疆 乌鲁木齐 830046
为了解释超强激光与等离子体相互作用时产生的自生磁场及其产生机制,从动力论出发,用理论分析和数值模拟法研究了强激光打平面薄靶时,由温度梯度和密度梯度的非共线性所决定的自生磁场,得到了自生磁场空间分布的时间演化关系。研究结果表明,当激光入射等离子体时,由于不平行的密度和温度梯度, 在等离子体表面会出现自生磁场。这种磁场明显地影响激光吸收和各种输送过程。
超强激光 平面靶 温度梯度和密度梯度 数值模拟 自生磁场 
激光与光电子学进展
2014, 51(8): 083201
作者单位
摘要
新疆大学物理科学与技术学院, 新疆 乌鲁木齐 830046
利用粒子模拟程序,模拟研究了超强激光与等离子体相互作用中的电子束流不稳定性的产生机制,得到了不稳定性所激发的自生磁场的线性增长率与各向异性参数之间的函数关系。观察到了激光与等离子体相互作用时产生的饱和自生磁场在表面领域上的演化过程,发现沿x方向出现的电流比较大时,饱和自生的磁场在z方向的发展比较快,临界面附近较大,但随着深度的增加,逐渐以指数形式减少。
超强激光脉冲 等离子体 粒子模拟法 饱和自生磁场 ultraintense laser pulses plasma PIC simulation saturated magnetic field 
光学与光电技术
2013, 11(4): 20
作者单位
摘要
新疆大学 物理科学与技术学院, 乌鲁木齐 830046
采用理论分析和数值模拟研究了考虑相对论效应的自生磁场及其产生机制,给出了自生磁场的解析表达式,得到了温度梯度和密度梯度的非共线性所引起的自生磁场空间分布的时间演化关系。数值结果表明,当峰值强度为1019 W/cm2的激光作用于凹形靶前表面时,在等离子体表面领域观察到的自生磁场最大值为51×102 T量级,与实验测量结果相符合。
飞秒激光 温度梯度和密度梯度非共线性 热电机制 数值模拟 自生磁场 femtosecond laser non-parallel property of temperature gradient and thermoelectric mechanism numerical simulation self-generated magnetic field 
强激光与粒子束
2013, 25(7): 1709
作者单位
摘要
新疆大学物理科学与技术学院, 新疆 乌鲁木齐 830046
用3维粒子模拟程序研究了相对论强激光和高密度等离子体相互作用引起的电磁不稳定。数值模拟表明,在线偏振强激光作用下,等离子体表面出现了电磁不稳定性。形成的不稳定结构随时间发展和激光功率密度的增加进一步深入到等离子体内部,最终使等离子体表面处激发饱和自生磁场。这种由电子速度各向异性而产生的自生磁场对激光有质动力推开电子时所形成的电子热流产生抑制作用,并将直接影响电子加速效率。
激光聚变 快点火 Weibel不稳定性 粒子模拟法 饱和自生磁场 电子热传导 laser fusion fast ignition Weibel instability particle-in-cell metod saturated magnetic fields electron thermal conduction 
光学与光电技术
2012, 10(6): 26

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!