光学学报, 2016, 36 (1): 0111004, 网络出版: 2015-12-31   

基于数字微镜器件的光子计数对应鬼成像 下载: 627次

Correspondence Ghost Imaging via Photon Counting Based on Digital Micromirror Device
作者单位
1 上海交通大学区域光纤通信网与新型光通信系统国家重点实验室, 北斗导航与位置服务上海市重点实验室,量子信息感知与处理研究中心, 上海 200240
2 西北大学信息科学与技术学院, 陕西 西安 710100
摘要
提出了一种基于数字微镜器件的光子计数对应鬼成像方案。该方案采用数字微镜器件对光源进行调制,通过时间相关单光子计数技术获取光子计数值,并利用对应鬼成像算法计算目标物体的像。结合鬼成像理论和对应鬼成像理论阐明了光子计数对应鬼成像原理,并通过实验对该方案进行了验证。研究结果表明,该方案能够实现弱光成像。利用该方案可以获得与传统鬼成像效果相当的成像质量,但降低了图像重建过程中的计算量和算法复杂度。此外,该方案略去了阵列探测器对光强分布的测量,利用一个不具有空间分辨率的单光子探测器结合对应鬼成像算法,即可得目标物体的像,同时也能获得目标的距离信息。
Abstract
The correspondence ghost imaging scheme via photon counting based on micromirror device is proposed. In this scheme, a digital micromirror device is used to module the light source, the time-correlated single photon counting technology is introduced to acquire the photon counting value, and correspondence ghost imaging is used to calculate the image of target object. The principle of correspondence ghost imaging via photon counting is clarified with ghost imaging theory and correspondence ghost imaging theory, and the proposed scheme is verified by experiments. The research results show that the proposed scheme can realize weak light imaging. The images achieved by the proposed scheme are as good as those by traditional ghost imaging while the computational complexity in the process of image reconstruction is reduced. Besides, the measurement of intensity distribution by array detector is omitted in the proposed scheme and the image of target object is acquired with a single photon detector which has no spatial resolution, combined with correspondence ghost imaging algorithm. In the meantime, the proposed scheme can provide distance information of the object.
参考文献

[1] T B Pittman, Y H Shih, D V Strekalov, et al.. Optical imaging by means of two-photon quantum entanglement[J]. Phys Rev A, 1995, 52 (5): R3429-R3432.

[2] R S Bennink, S J Bentley, R W Boyd.“Two-photon”coincidence imaging with a classical source[J]. Phys Rev Lett, 2002, 89(11): 113601.

[3] A Gatti, E Brambilla, M Bache, et al.. Ghost imaging with thermal light: Comparing entanglement and classical correlation[J]. Phys Rev Lett, 2004, 93(9): 093602.

[4] J Cheng, S Han. Incoherent coincidence imaging and its applicability in X-ray diffraction[J]. Phys Rev Lett, 2004, 92(9): 093903.

[5] F Ferri, D Magatti, A Gatti, et al.. High-resolution ghost image and ghost diffraction experiments with thermal light[J]. Phys Rev Lett, 2005, 94(18): 183602.

[6] D Zhang, Y Zhai, L Wu, et al.. Correlated two-photon imaging with true thermal light[J]. Opt Lett, 2005, 30(18): 2354-2356

[7] 沈夏, 张明辉, 刘红林, 等. 脉冲式赝热光源的实验研究[J]. 中国激光, 2009, 36(11): 2893-2898.

    Shen xia, Zhang Minghui, Liu Honglin, et al.. Research on the pulsed thermal light[J]. Chinese J Lasers, 2009, 36(11): 2893-2898.

[8] Y Bromberg, O Katz, Y Silberberg. Ghost imaging with a single detector[J]. Phys Rev A, 2009, 79(5): 053840.

[9] J H Shapiro. Computational ghost imaging[J]. Phys Rev A, 2008, 78(6): 061802.

[10] F Ferri, D Magatti, L A Lugiato, et al.. Differential ghost imaging[J]. Phys Rev Lett, 2010, 104(25): 253603.

[11] O Katz, Y Bromberg, Y Silberberg. Compressive ghost imaging[J]. Appl Phys Lett, 2009, 95(13): 131110.

[12] Kaihong Luo, Boqiang Huang, Weimou Zheng, et al.. Nonlocal imaging by conditional averaging of random reference measurements[J]. Chin Phys Lett, 2012, 29(7): 074216.

[13] M Li, Y Zhang, K Luo, et al.. Time-correspondence differential ghost imaging[J]. Phys Rev A, 2013, 87(3): 033813.

[14] J Cheng. Ghost imaging through turbulent atmosphere[J]. Opt Express, 2009, 17(10): 7916-7921.

[15] 金浩强, 石剑虹, 曾贵华, 等. 基于投影仪的“街角成像”和穿透散射介质成像[J]. 光学学报, 2014, 34(5): 0511006.

    Jin Haoqiang, Shi Jianhong, Zeng Guihua, et al.. Looking around corners and imaging through turbid media with projector[J]. Acta Optica Sinica, 2014, 34(5): 0511006.

[16] B I Erkmen. Computational ghost imaging for remote sensing[J]. J Opt Soc Am A, 2012, 29(5): 782-789.

[17] 唐文哲, 曹正文, 石剑虹, 等. 基于数字微镜器件的“后视”关联成像[J]. 光学学报, 2015, 35(5): 0511004.

    Tang Wenzhe, Cao Zhengwen, Shi Jianhong, et al.. Back-side correlation imaging with digital micro mirror[J]. Acta Optica Sinica, 2015, 35(5): 0511004.

[18] B Sun, M P Edgar, R Bowman, et al.. 3D Computational imaging with single-pixel detectors[J]. Science, 2013, 340(6134): 844-847.

[19] Yinzuo Zhang, Jianhong Shi, Hu Li, et al.. Imaging through aberrating media by computational ghost imaging with incoherent[J]. Chin Opt Lett, 2014, 12(1): 011102.

[20] 陈超, 赵生妹. 高阶差值筛选鬼成像方案研究[J]. 光学学报, 2014, 34(6): 0611002.

    Chen Chao, Zhao Shengmei. Study on high order difference sifted ghost imaging scheme[J]. Acta Optica Sinica, 2014, 34(6): 0611002.

[21] S Zhao, P Zhuang. Correspondence normalized ghost imaging on compressive sensing[J]. Chin Phys B, 2014, 23(5): 054203.

[22] M Zafari, R Kheradmand, S Ahmadi-Kandjani. Optical encryption with selective computational ghost imaging[J]. J Opt, 2014, 16(10): 105405.

[23] 吴楠, 龚文林, 韩申生. 基于运动轨迹可调式随机相位板的赝热光鬼成像实验研究[J]. 光学学报, 2015, 35(7): 0711005.

    Wu Nan, Gong Wenlin, Han Shensheng. Experimental research on pseudo-thermal light ghost imaging with random phase plate based on variable motion trail[J]. Acta Optica Sinica, 2015, 35(7): 0711005.

[24] W Becker. Advanced Time-Correlated Single Photon Counting Techniques[M]. Berlin Heidelberg: Springer, 2005: 11-24.

[25] J S Massa, A M Wallace, G S Buller, et al.. Laser depth measurement based on time-correlated single-photon counting[J]. Opt Lett, 1997, 22(8): 543-545.

曹飞, 石剑虹, 杨莹, 曾贵华. 基于数字微镜器件的光子计数对应鬼成像[J]. 光学学报, 2016, 36(1): 0111004. Cao Fei, Shi Jianhong, Yang Ying, Zeng Guihua. Correspondence Ghost Imaging via Photon Counting Based on Digital Micromirror Device[J]. Acta Optica Sinica, 2016, 36(1): 0111004.

本文已被 4 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!