光谱学与光谱分析, 2014, 34 (5): 1383, 网络出版: 2014-05-06   

高光谱RX异常检测的多DSP并行化处理技术

Multi-DSP Parallel Processing Technique of Hyperspectral RX Anomaly Detection
作者单位
1 中国科学院光电研究院, 计算光学成像技术重点实验室, 北京100094
2 西安电子科技大学, 陕西 西安710071
摘要
为达到高光谱图像数据RX异常检测处理的高速、 实时、 海量存储等要求, 本文提出了一种基于 CPCI Express 标准总线架构的多DSP高光谱图像并行处理系统的解决方案。 系统采用4片DSP共享数据总线和存储器的紧耦合与Link口互联相结合的硬件拓扑架构。 在该硬件平台上, 针对光谱RX异常检测算法以及光谱图像三维数据的特点, 分配各DSP并行处理任务, 提出了一种利用图像空间分块计算并求整个图像的均值矩阵与协方差矩阵的4DSP并行处理技术。 结果表明, 在保证同等探测效果的条件下, 采用本文的RX异常检测算法4DSP并行处理技术, 可以达到单DSP处理4倍的时间效率, 解决了DSP内存容量对大数据量图像处理的限制, 并较好的完成了光谱数据的实时处理要求。
Abstract
To satisfy the requirement of high speed, real-time and mass data storage etc. for RX anomaly detection of hyperspectral image data, the present paper proposes a solution of multi-DSP parallel processing system for hyperspectral image based on CPCI Express standard bus architecture. Hardware topological architecture of the system combines the tight coupling of four DSPs sharing data bus and memory unit with the interconnection of Link ports. On this hardware platform, by assigning parallel processing task for each DSP in consideration of the spectrum RX anomaly detection algorithm and the feature of 3D data in the spectral image, a 4DSP parallel processing technique which computes and solves the mean matrix and covariance matrix of the whole image by spatially partitioning the image is proposed. The experiment result shows that, in the case of equivalent detective effect, it can reach the time efficiency 4 times higher than single DSP process with the 4-DSP parallel processing technique of RX anomaly detection algorithm proposed by this paper, which makes a breakthrough in the constraints to the huge data image processing of DSP’s internal storage capacity, meanwhile well meeting the demands of the spectral data in real-time processing.
参考文献

[1] ZHANG Zhi-rong(张志荣). Huazhong University of Science and Technology(华中科技大学), 2011.

[2] YE Yi, YANG Guang, TONG Tao(叶怡, 杨桄, 童涛). Laser & Infrared(激光与红外), 2013, 43(7): 720.

[3] LI Shan-shan, ZHANG Bing, GAO Lian-ru, et al(李山山, 张兵, 高连如, 等). Acta Optica Sinica(光学学报), 2010, 30(7): 2117.

[4] LI Na, BAI Yong, ZHAO Hui-jie, et al(李娜, 白勇, 赵慧洁, 等). Modern Electronics Technique(现代电子技术), 2013, 36(2): 110.

[5] Abel Paz, Antonio Plaza. Proc. SPIE. 7810, Satellite Data Compression, Communications, and Processing Ⅵ 78100R. August 19. 2010.

[6] LIU Qian-wen, HU Bing-liang, DUAN Xiao-feng, et al(刘倩雯, 胡炳樑, 段晓峰, 等). Microcomputer Informatiom(微计算机信息), 2009, 25(2): 221.

[7] ADSP-TS201S TigerSHARC Processor Hardware Reference. Analog Devices Inc, 2004.

[8] ADSP-TS201S TigerSHARC Embedded Processor Data Sheet. Analog Devices Inc, 2004.

[9] T26U Compactpci Octal ADSP-TS201S TigerSHARC 6U Compactpci Board User’s Guide, 2006.

[10] Reed I S, Yu Xiaoli. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1990, 38(10): 1760.

[11] Yuval Cohen, Dan G Blumberg, Stanley R Rotman. SPIE Journal of Applied Remote Sensing, 2012.

郭文记, 曾晓茹, 赵宝玮, 明星, 张桂峰, 吕群波. 高光谱RX异常检测的多DSP并行化处理技术[J]. 光谱学与光谱分析, 2014, 34(5): 1383. GUO Wen-ji, ZENG Xiao-ru, ZHAO Bao-wei, MING Xing, ZHANG Gui-feng, Lv Qun-bo. Multi-DSP Parallel Processing Technique of Hyperspectral RX Anomaly Detection[J]. Spectroscopy and Spectral Analysis, 2014, 34(5): 1383.

本文已被 3 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!