中国激光, 2015, 42 (12): 1205001, 网络出版: 2015-12-11  

硫系60°弯曲光子晶体波导结构优化及传输特性研究

Transmission Characteristics and Structure Optimization of 60° Bent Chalcogenide Photonic Crystal Waveguides
作者单位
1 宁波大学高等技术研究院红外材料与器件实验室, 浙江 宁波 315211
2 浙江省光电探测材料及器件实验室, 浙江 宁波 315211
摘要
通过平面波展开法(PWE)计算硫系光子晶体带隙并采用时域有限差分法(FDTD)模拟硫系60°弯曲光子晶体波导的传输特性,在波导弯曲部分线缺陷处添加小空气孔缺陷,提高了其带宽和透光性。在60°弯曲区域线缺陷外边缘处引入2个对称空气孔,通过改变其半径来改善波导传输效率。模拟结果表明,当引入半径为0.54R 的空气孔时,传输带宽由初始的60 nm 提高到161 nm,但此时透射率波动性较大。在此基础上在弯曲线缺陷中心处又引入若干个空气孔,当引入3个半径为0.48R 的空气孔时,此种结构不但提高了波导的传输效率,并且使传输带宽增加到340 nm。将单个60°弯曲波导优化结构应用于连续60°弯曲波导中,研究结果表明连续弯曲波导的传输效率得到显著提高。
Abstract
The plane wave expansion method (PWE) is adopted to calculate chalcogenide photonic crystal bandgap, and finite difference time domain (FDTD) method is used to simulate transmission characteristics for 60° bent chalcogenide photonic crystal waveguide. Two symmetric air-holes are introduced in outer edge of line defects in the 60° bent region, in order to improve the transmission efficiency by adjusting the radii of the air-holes. The simulation result shows that transmission bandwidth is widened from the initial 60 nm to 161 nm while the radius of the air-holes is 0.54R, however, the transmission efficiency fluctuates violently. Then some more air-holes are introduced in the central line defect in bent region. It is noticed that when 3 air-holes with radius of 0.48R are added, not only the transmission efficiency is improvement, but also the transmission bandwidth is widened to 340 nm. Continuous bend of 60° waveguide structure optimization is similar to that of single one, and the result shows that the transmission efficiency in continuous bend of waveguide can be significantly improved.
参考文献

[1] K Rauscher, D Erni, J Smajic, et al.. Improved transmission for 60° photonic crystal waveguide bends[J]. Progress in Electromagnetics Research Symposium, 2004: 25-28.

[2] L Dekkiche, R Naoum. Optimal design of 90° bend in two dimensional photonic crystal waveguides[J]. Journal of Applied Sciences, 2008, 8(13): 2449-2455.

[3] C Z Zhou, Y Z Liu, Z Y Li. Waveguide bend of 90° in two-dimensional triangular lattice silicon photonic crystal slabs[J]. Chin Phys Lett, 2010, 27(8): 084203.

[4] B Sarah, M K Moravvej-Farshi, M Ebnali-Heidari. Proposal for enhancing the transmission efficiency of photonic crystal 60° waveguide bends by means of optofluidic infiltration[J]. Appl Opt, 2011, 50(21): 4048-4053.

[5] L H Frandsen, A Harp th, P I Borel, et al.. Broadband photonic crystal waveguide 60° bend obtained utilizing topology optimization[J]. Opt Express, 2004, 12(24): 5916-5921.

[6] A Mekis, J C Chen, I Kurland, et al.. High transmission through sharp bends in photonic crystal waveguides[J]. Phys Rev Lett, 1996, 77 (18): 3787-3790.

[7] D Freeman, S Madden, B Luther-Davies. Fabrication of planar photonic crystals in a chalcogenide glass using a focused ion beam[J]. Opt Express, 2005, 13(8): 3079-3086.

[8] M Khatibi Moghaddam, M M Mirsalehi, A R Attari, et al.. A 60° photonic crystal waveguide bend with improved transmission characteristics [J]. Optica Applicata, 2009, 39(2): 307-317.

[9] L Zhang, T Cheng, D Deng, et al.. Tunable soliton generation in a birefringent tellurite microstructured optical fiber[J]. IEEE Photon Technol Lett, 2015, 27(14): 1547-1549.

[10] Qin G, Yan X, Kito C, et al.. Ultrabroadband supercontinuum generation from ultraviolet to 6.28 mm in a fluoride fiber[J]. Appl Phys Lett, 2009, 95(16): 1103.

[11] 王贤旺, 张巍, 章亮, 等. 硫系玻璃光子晶体光波导的制备研究发展[J]. 激光与光电子学进展, 2013, 50(12): 120001.

    Wang Xianwang, Zhang Wei, Zhang Liang, et al.. Research progress of fabrication of chalcogenide glass photonic crystal waveguide[J]. Laser & Optoelectronics Progress, 2013, 50(12): 120001.

[12] 章亮, 张巍, 聂秋华, 等. 二维光子晶体波导研究进展[J]. 激光与光电子学进展, 2013, 50(3): 030008.

    Zhang Liang, Zhang Wei, Nie Qiuhua, et al.. Research progress of tow-dimensional crystal waveguide[J]. Laser & Optoelectronics Progress, 2013, 50(3): 030008.

[13] 刘珊, 沈祥, 徐铁峰, 等. Ge20Sb15Se65硫系脊型光波导的色散特性[J]. 光学学报, 2013, 33(5): 0513001.

    Liu Shan, Shen Xiang, Xu Tiefeng, et al.. Dispersion characteristics of Ge20Sb15Se65 chalcogenide rib waveguide[J]. Atca Optica Sinica, 2013, 33(5): 0513001.

[14] 韩金涛, 张巍, 魏凤娟, 等. Ge20Sb15Se65硫基光子晶体平板波导的宽带慢光特性研究[J]. 中国激光, 2015, 42(6): 0606002.

    Han Jintao, Zhang Wei, Wei Fengjuan, et al.. Investigation of wideband slow light in Ge20Sb15Se65 photonic crystal slab waveguides[J]. Chinese J Lasers, 2015, 42(6): 0606002.

[15] L Zhang, W Zhang, X Wang, et al.. Investigation of Ge20Sb15Se65 photonic crystal slab waveguides with slow light at infrared wavelength [J]. Optical Materials Express, 2013, 3(9): 1438-1443.

[16] K Suzuki, Y Hamachi, T Baba. Fabrication and characterization of chalcogenide glass photonic crystal waveguides[J]. Opt Express, 2009, 17(25): 22393-22400.

[17] Y Chen, X Shen, R Wang, et al.. Optical and structural properties of Ge-Sb-Se thin films fabricated by sputtering and thermal evaporation [J]. Journal of Alloys and Compounds, 2013, 548(25): 7-12.

[18] C Grillet, C Smith, D Freeman, et al.. Efficient coupling to chalcogenide glass photonic crystal waveguides via silica optical fiber nanowires [J]. Opt Express, 2006, 14(3): 1070-1078.

[19] K Suzuki, T Baba. Nonlinear light propagation in chalcogenide photonic crystal slow light waveguides[J]. Opt Express, 2010, 18(25): 26675- 26685.

[20] C Smith, C Grillet, S Tomljenovic-Hanic, et al.. Characterisation of chalcogenide 2D photonic crystal waveguides and nanocavities using silica fibre nanowires[J]. Physica B: Condensed Matter, 2007, 394(2): 289-292.

[21] A Chutinan, S Noda, Alongkarn. Waveguides and waveguide bends in two-dimensional photonic crystal slabs[J]. Phys Rev B, 2000, 62 (15): 4488-4492.

[22] Chutinan, M Okano, S Noda. Wider bandwidth with high transmission through waveguide bends in two-dimensional photonic crystal slabs [J]. Appl Phys Lett, 2002, 80(10): 1698-1700.

[23] M Dinu, R L Willett, K Baldwin, et al.. Waveguide tapers and waveguide bends in AlGaAs-based two-dimensional photonic crystals[J]. Appl Phys Lett, 2003, 83(22): 4471-4473.

[24] P F Xing, P I Borel, L H Frandsen, et al.. Optimization of bandwidth in 60° photonic crystal waveguide bends[J]. Opt Commun, 2005, 248(1-3): 179-184.

[25] Z Hu, Y Y Lu. Improved bends for two-dimensional photonic crystal waveguides[J]. Opt Commun, 2011, 284(12): 2812-2816.

魏凤娟, 张巍, 韩金涛, 王贤旺, 吴越豪, 张培晴, 戴世勋, 聂秋华. 硫系60°弯曲光子晶体波导结构优化及传输特性研究[J]. 中国激光, 2015, 42(12): 1205001. Wei Fengjuan, Zhang Wei, Han Jintao, Wang Xianwang, Wu Yuehao, Zhang Peiqing, Dai Shixun, Nie Qiuhua. Transmission Characteristics and Structure Optimization of 60° Bent Chalcogenide Photonic Crystal Waveguides[J]. Chinese Journal of Lasers, 2015, 42(12): 1205001.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!