Frontiers of Optoelectronics, 2013, 6 (4): 386, 网络出版: 2014-03-03  

Review on one-dimensional ZnO nanostructures for electron field emitters

Review on one-dimensional ZnO nanostructures for electron field emitters
作者单位
1 School of Medical Image, Xuzhou Medical College, Xuzhou 221004, China
2 School of Materials Science and Engineering, China University of Mining and Technology, Xuzhou 221116, China
摘要
Abstract
The emission of electrons from the surface of a solid caused by a high electric field is called field emission (FE). Electron sources based on FE are used today in a wide range of applications, such as microwave traveling wave tubes, e-beam evaporators, mass spectrometers, flat panel of field emission displays (FEDs), and highly efficient lamps. Since the discovery of carbon nanotubes (CNTs) in 1991, much attention has been paid to explore the usage of these ideal one-dimensional (1D) nanomaterials as field emitters achieving high FE current density at a low electric field because of their high aspect ratio and “whisker-like” shape for optimum geometrical field enhancement. 1D metal oxide semiconductors, such as ZnO and WO3 possess high melting point and chemical stability, thereby allowing a higher oxygen partial pressure and poorer vacuum in FE applications. In addition, unlike CNTs, in which both semiconductor and metallic CNTs can co-exist in the as-synthesized products, it is possible to prepare 1D semiconductor nanostructures with a unique electronic property. Moreover, 1D semiconductor nanostructures generally have the advantage of a lower surface potential barrier than that of CNTs due to lower electron affinity and the conductivity could be enhanced by doping with certain elements. As a consequence, there has been increasing interest in the investigation of 1D metal oxide nanostructure as an appropriate alternative FE electron source to CNT for FE devices in the past few years. This paper provides a comprehensive review of the state-of-theart research activities in the field. It mainly focuses on FE properties and applications of the most widely studied 1D ZnO nanostructures, such as nanowires (NWs), nanobelts, nanoneedles and nanotubes (NTs). We begin with the growth mechanism, and then systematically discuss the recent progresses on several kinds of important nanostructures and their FE characteristics and applications in details. Finally, it is concluded with the outlook and future research tendency in the area.
参考文献

[1] Ryu Y, Lee T S, Lubguban J A, White H W, Kim B J, Kim B J, Park Y S, Youn C J. Next generation of oxide photonic devices: ZnO-based ultraviolet light emitting diodes. Applied Physics Letters, 2006, 88(24): 241108-1-241108-3

[2] Konenkamp R, Word R C, Godinez M. Ultraviolet electroluminescence from ZnO/polymer heterojunction light- emitting diodes . Nano Letters, 2005, 5(10): 2005-2008

[3] Lim J H, Kang C K, Kim K K, Park I K, Hwang D K, Park S J. UV electroluminescence emission from ZnO light-emitting diodes grown by high-temperature radiofrequency sputtering. Advanced Materials, 2006, 18(20): 2720-2724

[4] Zhu H, Shan C X, Li B H, Zhang J Y, Yao B, Zhang Z Z, Zhao D X, Shen D Z, Fan X W. Ultraviolet electroluminescence from MgZnO-based heterojunction light-emitting diodes. Journal of Physical Chemistry C, 2009, 113(7): 2980-2982

[5] Ryu Y R, Lubguban J A, Lee T S, White H W, Jeong T S, Youn C J, Kim B J. Excitonic ultraviolet lasing in ZnO-based light emitting devices. Applied Physics Letters, 2007, 90(13): 131115-1-131115-3

[6] Zhu H, Shan C X, Yao B, Li B H, Zhang J Y, Zhang Z Z, Zhao D X, Shen D Z, Fan X W, Lu Y M, Tang Z K. Ultralow-threshold laser realized in zinc oxide. Advanced Materials, 2009, 21(16): 1613-1617

[7] Tang Z K, Wong G K L, Yu P, Kawasaki M, Ohtomo A, Koinuma H, Segawa Y. Room-temperature ultraviolet laser emission from self-assembled ZnO microcrystallite thin films. Applied Physics Letters, 1998, 72(25): 3270-3272

[8] Chu S, Olmedo M, Yang Z, Kong J, Liu J L. Electrically pumped ultraviolet ZnO diode lasers on Si. Applied Physics Letters, 2008, 93(18): 181106-1-181106-3

[9] Liu K W, Shen D Z, Shan C X, Zhang J Y, Yao B, Zhao D X, Lu Y M, Fan X W. Zn0.76Mg0.24O homojunction photodiode for ultraviolet detection. Applied Physics Letters, 2007, 91(20): 201106-1-201106-3

[10] Liao L, Lu H B, Shuai M, Li J C, Liu Y L, Liu C, Shen Z X, Yu T. A novel gas sensor based on field ionization from ZnO nanowires: moderate working voltage and high stability. Nanotechnology, 2008, 19(17): 175501-175505

[11] Zhang D, Liu Z, Li C, Tang T, Liu X, Han S, Lei B, Zhou C. Detection of NO2 down to ppb levels using individual and multiple In2O3 nanowire devices. Nano Letters, 2004, 4(10): 1919-1924

[12] Huang H, Tan O K, Lee Y C, Tran T D, Tse M S, Yao X. Semiconductor gas sensor based on tin oxide nanorods prepared by plasma-enhanced chemical vapor deposition with postplasma treatment. Applied Physics Letters, 2005, 87(16): 163123-1-163123-3

[13] Park J Y, Song D E, Kim S S. An approach to fabricating chemical sensors based on ZnO nanorod arrays. Nanotechnology, 2008, 19(10): 105503-105507

[14] Chang S J, Hsueh T J, Chen I C, Huang B R. Highly sensitive ZnO nanowire CO sensors with the adsorption of Au nanoparticles. Nanotechnology, 2008, 19(17): 175502-175506

[15] Niu S, Hu Y, Wen X, Zhou Y, Zhang F, Lin L, Wang S, Wang Z L, Enhanced performance of flexible ZnO nanowire based room-temperature oxygen sensors by piezotronic effect. Advanced Materials, 2013, 25(27): 3701-3706

[16] Law J B K, Thong J T L. Improving the NH3 gas sensitivity of ZnO nanowire sensors by reducing the carrier concentration. Nanotechnology, 2008, 19(20): 205502-205506

[17] Law M, Greene L E, Johnson J C, Saykally R, Yang P. Nanowire dye-sensitized solar cells. Nature, 2005, 4(6): 455-459

[18] Seow Z L S, Wong A S W, Thavasi V, Jose R, Ramakrishna S, Ho G W. Controlled synthesis and application of ZnO nanoparticles, nanorods and nanospheres in dye-sensitized solar cells. Nanotechnology, 2009, 20(4): 045604-045609

[19] Jiang C Y, Sun X W, Tan K W, Lo G Q, Kyaw A K K, Kwong D L. High-bendability flexible dye-sensitized solar cell with a nanoparticle-modified ZnO-nanowire electrode. Applied Physics Letters, 2008, 92(14): 143101-1-143101-3

[20] Hsu Y F, Xi Y Y, Djurisic A B, ChanWK. ZnO nanorods for solar cells: hydrothermal growth versus vapor deposition. Applied Physics Letters, 2008, 92(13): 133507-1-133507-3

[21] Tsukazaki A, Ohtomo A, Onuma T, Ohtani M, Makino T, Sumiya M, Ohtani K, Chichibu S F, Fuke S, Segawa Y, Ohno H, Koinuma H, Kawasaki M. Repeated temperature modulation epitaxy for ptype doping and light-emitting diode based on ZnO. Nature Materials, 2005, 4(1): 42-46

[22] XuWZ, Ye Z Z, Zeng Y J, Zhu L P, Zhao B H, Jiang L, Lu J G, He H P, Zhang S B. ZnO light-emitting diode grown by plasmaassisted metal organic chemical vapor deposition. Applied Physics Letters, 2006, 88(17): 173506-1-173506-3

[23] Bian J M, Liu W F, Liang H W, Hu L Z, Sun J C, Luo Y M, Du G T. Room temperature electroluminescence from the n-ZnMgO/ ZnO/p-ZnMgO heterojunction device grown by ultrasonic spray pyrolysis. Chemical Physics Letters, 2006, 430(1-3): 183-187

[24] Zhang J Y, Li P J, Sun H, Shen X, Deng T S, Zhu K T, Zhang Q F, Wu J L. Ultraviolet electroluminescence from controlled arsenicdoped ZnO nanowire homojunctions. Applied Physics Letters, 2008, 93(2): 021116-1-021116-3

[25] Hsu Y F, Xi Y Y, Tam K H, Djurisic A B, Luo J M, Ling C C, Cheung C K, Ng A M C, ChanWK, Deng X, Beling C D, Fung S, Cheah K W, Fong P W K, Surya C C. Undoped p-type ZnO nanorods synthesized by a hydrothermal method. Advanced Functional Materials, 2008, 18(7): 1020-1030

[26] Goldberger J, He R, Zhang Y F, Lee S K, Yan H Q, Choi H J, Yang P D. Single-crystal gallium nitride nanotubes. Nature, 2003, 422(6932): 599-602

[27] Wang X D, Gao P X, Li J, Summers C J, Wang Z L. Rectangular porous ZnO-ZnS nanocables and ZnS nanotubes. Advanced Materials, 2002, 14(23): 1732-1735

[28] Shoulders K R. Microelectronics using electron-beam-activated machining techniques. Advances in Computers, 1961, 2: 135-293

[29] Spindt C A. A thin-film field-emission cathode. Journal of Applied Physics, 1968, 39(7): 3504-3505

[30] Spindt C A, Brodie I, Humphrey L, Westerberg E R. Physical properties of thin-film field emission cathodes with molybdenum cones. Journal of Applied Physics, 1976, 47(12): 5248-5263

[31] Spindt C A, Shoulders K R, Heynick L N. US Patents, 3755704, 1973

[32] Xu N S, Huq S E. Novel cold cathode materials and applications. Materials Science and Engineering: R: Reports, 2005, 48(2-5): 47-189

[33] Iijima S. Helical microtubules of graphitic carbon. Nature, 1991, 354(6348): 56-58

[34] Xu N S, Deng S Z, Chen J. Nanomaterials for field electron emission: preparation, characterization and application. Ultramicroscopy, 2003, 95(1-4): 19-28

[35] Fan S S, Chapline M G, Franklin N R, Tombler T W, Cassell A M, Dai H J. Self-oriented regular arrays of carbon nanotubes and their field emission properties. Science, 1999, 283(5401): 512-514

[36] Heer W A D, Chatelain A, Ugarte D. A carbon nanotube fieldemission electron source .Science, 1995, 270(5239): 1179-1180

[37] Rinzler A G, Hafner J H, Nikolaev P, Nordlander P, Colbert D T, Smalley R E, Lou L, Kim S G, Tománek D. Unraveling nanotubes: field emission from an atomic wire. Science, 1995, 269(5230): 1550-1553

[38] Saito Y, Uemura S. Field emission from carbon nanotubes and its application to electron sources. Carbon, 2000, 38(2): 169-182

[39] Saito Y, Uemura S, Hamaguchi K. Cathode ray tube lighting elements with carbon nanotube field emitters. Japanese Journal of Applied Physics, 1998, 37(Part 2, No. 3B): L346-L348

[40] Pradhan D, Kumar M, Ando Y, Leung K T. One-dimensional and two-dimensional ZnO nanostructured materials on a plastic substrate and their field emission properties. Journal of Physical Chemistry C, 2008, 112(18): 7093-7096

[41] Greene L E, Law M, Goldberger J, Kim F, Johnson J C, Zhang Y F, Saykally R J, Yang P D. Low-temperature wafer-scale production of ZnO nanowire arrays. Angewandte Chemie International Edition, 2003, 42(26): 3031-3034

[42] Kumar R T R, McGlynn E, Biswas M, Saunders R, Trolliard G, Soulestin B, Duclere J R, Mosnier J P, HenryMO. Growth of ZnO nanostructures on Au-coated Si: influence of growth temperature on growth mechanism and morphology. Journal of Applied Physics, 2008, 104(8): 084309-084319

[43] Kim D S, Scholz R, Gosele U, Zacharias M. Gold at the root or at the tip of ZnO nanowires: a model. Small, 2008, 4(10): 1615-1619

[44] Chiu S P, Lin Y H, Lin J J. Electrical conduction mechanisms in natively doped ZnO nanowires. Nanotechnology, 2009, 20(1): 015203-015210

[45] Hochbaum A I, Fan R, He R G, Yang P D. Controlled growth of Si nanowire arrays for device integration. Nano Letters, 2005, 5(3): 457-460

[46] Zhou H J, Fallert J, Sartor J, Dietz R J B, Klingshirn C, Kalt H, Weissenberger D, Gerthsen D, Zeng H B, CaiWP. Ordered n-type ZnO nanorod arrays. Applied Physics Letters, 2008, 92(13): 132112-1-132112-3

[47] Pan Z W, Dai Z R,Wang Z L. Nanobelts of semiconducting oxides. Science, 2001, 291(5510): 1947-1949

[48] Gao P X, Wang Z L. Self-assembled nanowire-nanoribbon junction arrays of ZnO. Journal of Physical Chemistry B, 2002, 106(49): 12653-12658

[49] Li S Y, Lin P, Lee C Y, Tseng T Y. Field emission and photofluorescent characteristics of zinc oxide nanowires synthesized by a metal catalyzed vapor-liquid-solid process. Journal of Applied Physics, 2004, 95(7): 3711-3716

[50] Levin I, Davydov A, Nikoobakht B, Sanford N, Mogilevsky P. Growth habits and defects in ZnO nanowires grown on GaN/sapphire substrates. Applied Physics Letters, 2005, 87(10): 103110-1-103110-3

[51] Kim D S, Ji R, Fan H J, Bertram F, Scholz R, Dadgar A, Nielsch K, Krost A, Christen J, Gosele U, Zacharias M. Laser-interference lithography tailored for highly symmetrically arranged ZnO nanowire arrays. Small, 2007, 3(1): 76-80

[52] Gao P X, Ding Y, Wang Z L. Crystallographic orientation-aligned ZnO nanorods grown by a tin catalyst. Nano Letters, 2003, 3(9): 1315-1320

[53] Wang X D, Song J H, Summers C J, Ryou J H, Li P, Dupuis R D, Wang Z L. Density-controlled growth of aligned ZnO nanowires sharing a common contact: a simple, low-cost, and mask-free technique for large-scale applications. Journal of Physical Chemistry B, 2006, 110(15): 7720-7724

[54] Wang X D, Zhou J, Lao C S, Song J H, Xu N S, Wang Z L. In situ field emission of density-controlled ZnO nanowire arrays. Advanced Materials, 2007, 19(12): 1627-1631

[55] Shen G Z, Bando Y, Liu B D, Golberg D, Lee C J. Characterization and field-emission properties of vertically aligned ZnO nanonails and nanopencils fabricated by a modified thermal-evaporation process. Advanced Functional Materials, 2006, 16(3): 410-416

[56] Fang F, Zhao D X, Shen D Z, Zhang J Y, Li B H. Synthesis of ordered ultrathin ZnO nanowire bundles on an indium-tin oxide substrate. Inorganic Chemistry, 2008, 47(2): 398-400

[57] Liao X, Zhang X, Li S. The effect of residual stresses in the ZnO buffer layer on the density of a ZnO nanowire array. Nanotechnology, 2008, 19(22): 225313-1-225313-7

[58] Hong J I, Bae,Wang Z L, Snyder R L. Room-temperature, texturecontrolled growth of ZnO thin films and their application for growing aligned ZnO nanowire arrays. Nanotechnology, 2009, 20(8): 085609-1-085609-5

[59] Tseng Y K, Huang C J, Cheng H M, Lin I N, Liu K S, Chen I C. Characterization and field-emission properties of needle-like zinc oxide nanowires grown vertically on conductive zinc oxide films. Advanced Functional Materials, 2003, 13(10): 811-814

[60] Zhu Y W, Zhang H Z, Sun X C, Feng S Q, Xu J, Zhao Q, Xiang B, Wang R M, Yu D P. Efficient field emission from ZnO nanoneedle arrays. Applied Physics Letters, 2003, 83(1): 144-146

[61] Zhang Z X, Yuan H J, Zhou J J, Liu D F, Luo S D, Miao Y M, Gao Y, Wang J X, Liu L F, Song L, Xiang Y J, Zhao X W, Zhou W Y, Xie S S. Growth mechanism, photoluminescence, and fieldemission properties of ZnO nanoneedle arrays. Journal of Physical Chemistry B, 2006, 110(17): 8566-8569

[62] Xu C X, Sun X W. Field emission from zinc oxide nanopins. Applied Physics Letters, 2003, 83(18): 3806-3808

[63] Liao L, Li J C, Liu D H, Liu C, Wang D F, Song W Z, Fu Q. Selfassembly of aligned ZnO nanoscrews: growth, configuration, and field emission. Applied Physics Letters, 2005, 86(8): 083106-1-083106-3

[64] Wang R C, Liu C P, Huang J L, Chen S J. Growth and fieldemission properties of single-crystalline conic ZnO nanotubes. Nanotechnology, 2006, 17(3): 753-757

[65] XuWZ, Ye Z Z, Ma D W, Lu H M, Zhu L P, Zhao B H, Yang X D, Xu Z Y. Quasi-aligned ZnO nanotubes grown on Si substrates. Applied Physics Letters, 2005, 87(9): 093110-1-093110-3

[66] Wang W Z, Zeng B Q, Yang J, Poudel B, Huang J Y, Naughton M J, Ren Z F. Aligned ultralong ZnO nanobelts and their enhanced field emission. Advanced Materials, 2006, 18(24): 3275-3278

[67] He H P, Tang H P, Ye Z Z, Zhu L P, Zhao B H, Wang L, Li X H. Temperature-dependent photoluminescence of quasialigned Aldoped ZnO nanorods. Applied Physics Letters, 2007, 90(2): 023104-1-023104-3

[68] Lin S S, He H P, Ye Z Z, Zhao B H, Huang J Y. Temperaturedependent photoluminescence and photoluminescence excitation of aluminum monodoped and aluminum-indium dual-doped ZnO nanorods. Journal of Applied Physics, 2008, 104(11): 114307-1-114307-7

[69] He H P, Ye Z Z, Lin S S, Tang H P, Zhang Y Z, Zhu L P, Huang J Y, Zhao B H. Determination of the free exciton energy in ZnO nanorods from photoluminescence excitation spectroscopy. Journal of Applied Physics, 2007, 102(1): 013511-1-013511-4

[70] Lin S S, Tang H P, Ye Z Z, He H P, Zeng Y J, Zhao B H, Zhu L P. Synthesis of vertically aligned Al-doped ZnO nanorods array with controllable Al concentration. Materials Letters, 2008, 62(4): 603-606

[71] Zhu L P, Li J S, Ye Z Z, He H P, Chen X J, Zhao B H. Photoluminescence of Ga-doped ZnO nanorods prepared by chemical vapor deposition. Optical Materials, 2008, 31(2): 237-240

[72] Ahn C H, Han W S, Kong B H, Cho H K. Ga-doped ZnO nanorod arrays grown by thermal evaporation and their electrical behavior. Nanotechnology, 2009, 20(1): 015601-1-015601-7

[73] Yuan G D, Zhang W J, Jie J S, Fan X, Tang J X, Shafiq I, Ye Z Z, Lee C S, Lee S T. Tunable n-type conductivity and transport properties of Ga-doped ZnO nanowire arrays. Advanced Materials, 2008, 20(1): 168-173

[74] Xiang B,Wang P W, Zhang X Z, Dayeh S A, Aplin D P R, Soci C, Yu D P, Wang D L. Rational synthesis of p-type zinc oxide nanowire arrays using simple chemical vapor deposition. Nano Letters, 2007, 7(2): 323-328

[75] Yuan G D, ZhangWJ, Jie J S, Fan X, Zapien J A, Leung Y H, Luo L B, Wang P F, Lee C S, Lee S T. p-type ZnO nanowire arrays. Nano Letters, 2008, 8(8): 2591-2597

[76] Lu J G, Zhang Y Z, Ye Z Z, Zeng Y J, Huang J Y, Wang L. Rational synthesis and tunable optical properties of quasialigned Zn1 - xMgxO nanorods. Applied Physics Letters, 2007, 91(19): 193108-1-193108-3

[77] Zhi M, Zhu L, Ye Z,Wang F, Zhao B, Preparation and properties of ternary ZnMgO nanowires. The Journal of Physical Chemistry B, 2005, 109 (50): 23930-23934

[78] Wang F Z, Ye Z Z, Ma D W, Zhu L P, Zhuge F, He H P. Synthesis and characterization of quasi-aligned ZnCdO nanorods. Applied Physics Letters, 2005, 87(14): 143101-1-143101-3

[79] Liao L, Lu H B, Zhang L, Shuai M, Li J C, Liu C, Fu D J, Ren F. Effect of ferromagnetic properties in Al-doped Zn1-xCoxO nanowires synthesized by water-assistance reactive vapor deposition. Journal of Applied Physics, 2007, 102(11): 114307-1-114307-5

[80] Zhang X M, Zhang Y,Wang Z L, MaiWJ, Gu Y D, ChuWS,Wu Z Y. Synthesis and characterization of Zn1 - xMnxO nanowires. Applied Physics Letters, 2008, 92(16): 162102-1-162102-3

[81] Zhang X M, Mai W, Zhang Y, Ding Y, Wang Z L. Co-doped Yshape ZnO nanostructures: synthesis, structure and properties. Solid State Communications, 2009, 149(7-8): 293-296

[82] He J H, Lao C S, Chen L J, Davidovic D, Wang Z L. Large-scale Ni-doped ZnO nanowire arrays and electrical and optical properties. Journal of the American Chemical Society, 2005, 127(47): 16376-16377

[83] Xing G Z, Yi J B, Tao J G, Liu T, Wong L M, Zhang Z, Li G P, Wang S J, Ding J, Sum T C, Huan C H A, Wu T. Comparative study of room-temperature ferromagnetism in Cu-doped ZnO nanowires enhanced by structural inhomogeneity. Advanced Materials, 2008, 20(18): 3521-3527

[84] Zha M Z, Calestani D, Zappettini A, Mosca R, Mazzera M, Lazzarini L, Zanotti L. Large-area self-catalyzed and selective growth of ZnO nanowires. Nanotechnology, 2008, 19(32): 325603-1-325603-6

[85] Huo K F, Hu Y M, Fu J J, Wang X B, Chu P K, Hu Z, Chen Y. Direct and large-area growth of one-dimensional ZnO nanostructures from and on a brass substrate. Journal of Physical Chemistry C, 2007, 111(16): 5876-5881

[86] Gu X G, Huo K F, Qian G X, Fu J J, Chu P K. Temperature dependent photoluminescence from ZnO nanowires and nanosheets on brass substrate. Applied Physics Letters, 2008, 93(20): 203117-1-203117-3

[87] Morber J R, Ding Y, HaluskaMS, Li Y, Liu J P,Wang Z L, Snyder R L. PLD-Assisted VLS growth of aligned ferrite nanorods, nanowires, and nanobelts-synthesis, and properties. Journal of Physical Chemistry B, 2006, 110(43): 21672-21679

[88] Lin S S, Hong J I, Song J H, Zhu Y, He H P, Xu Z, Wei Y G, Ding Y, Snyder R L,Wang Z L. Phosphorus doped Zn1-xMgxO nanowire arrays. Nano Letters, 2009, 9(11): 3877-3882

[89] Vayssieres L, Keis K, Lindquist S E, Hagfeldt A. Purpose-built anisotropic metal oxide material: 3D highly oriented microrod array of ZnO. Journal of Physical Chemistry B, 2001, 105(17): 3350-3352

[90] Vayssieres L. Growth of arrayed nanorods and nanowires of ZnO from aqueous solutions. Advanced Materials, 2003, 15(5): 464-466

[91] Greene L E, Law M, Tan D H, Montano M, Goldberger J, Somorjai G, Yang P D. General route to vertical ZnO nanowire arrays using textured ZnO seeds. Nano Letters, 2005, 5(7): 1231-1236

[92] Greene L E, Yuhas B D, Law M, Zitoun D, Yang P D. Solutiongrown zinc oxide nanowires. Inorganic Chemistry, 2006, 45(19): 7535-7543

[93] Choy J H, Jang E S,Won J H, Chung J H, Jang D J, King Y W. Soft solution route to directionally grown ZnO nanorod arrays on Si wafer; room-temperature ultraviolet laser. Advanced Materials, 2003, 15(22): 1911-1914

[94] Govender K, Boyle D S, O’Brien P, Binks D,West D, Coleman D. Room-temperature lasing observed from ZnO nanocolumns grown by aqueous solution deposition. Advanced Materials, 2002, 14(17): 1221-1224

[95] Yang P, Yan H, Mao S, Russo R, Johnson J, Saykally R, Morris N, Pham J, He R, Choi H J. Controlled growth of ZnO nanowires and their optical properties. Advanced Materials, 2002, 12(5): 323-331

[96] Liu B, Zeng H C. Hydrothermal synthesis of ZnO nanorods in the diameter regime of 50 nm. Journal of the American Chemical Society, 2003, 125: 4403-4431

[97] Sun Y, Riley D J, Ashfold M N R. Mechanism of ZnO nanotube growth by hydrothermal methods on ZnO film-coated Si substrates. Journal of Physical Chemistry B, 2006, 110(31): 15186-15192

[98] Sun Y, Fuge G M, Fox N A, Riley D J, Ashfold M N R. Synthesis of aligned arrays of ultrathin ZnO nanotubes on a Si wafer coated with a thin ZnO Film. Advanced Materials, 2005, 17(20): 2477-2481

[99] Sun Y, Ndifor-Angwafora N G, Rileya D J, Ashfold M N R. Synthesis and photoluminescence of ultra-thin ZnO nanowire/nanotube arrays formed by hydrothermal growth. Chemical Physics Letters, 2006, 431(4-6): 352-357

[100] She G W, Zhang X H, Shi W S, Fan X, Chang J C, Lee C S, Lee S T, Liu C H. Controlled synthesis of oriented single-crystal ZnO nanotube arrays on transparent conductive substrates. Applied Physics Letters, 2008, 92(5): 053111-1-053111-3

[101] Liu J P, Xu C X, Zhu G P, Li X, Cui Y P, Yang Y, Sun X W. Hydrothermally grown ZnO nanorods on self-source substrate and their field emission. Journal of Physics D, Applied Physics, 2007, 40(7): 1906-1909

[102] Wang Y X, Li X Y, Lu G, Quan X, Chen G H. Highly oriented 1-D ZnO nanorod arrays on zinc foil: Direct growth from substrate, optical properties and photocatalytic activities. Journal of Physical Chemistry C, 2008, 112(19): 7332-7336

[103] Lu C H, Qi L M, Yang J H, Tang L, Zhang D Y, Ma J M. Hydrothermal growth of large-scale micropatterned arrays of ultralong ZnO nanowires and nanobelts on zinc substrate. Chemical Communications (Cambridge), 2006, (33): 3551-3553

[104] Yang H Q, Song Y Z, Li L, Ma J H, Chen D C, Mai S L, Zhao H. Large-scale growth of highly oriented ZnO nanorod arrays in the Zn-NH3$H2O hydrothermal system. Crystal Growth & Design, 2008, 8(3): 1039-1043

[105] Dev A, Kar S, Chakrabarti S, Chaudhuri S. Optical and field emission properties of ZnO nanorod arrays synthesized on zinc foils by the solvothermal route. Nanotechnology, 2006, 17(5): 1533-1540

[106] Yin M, Wu C K, Lou Y B, Burda C, Koberstein J T, Zhu Y, O’Brien S. Copper oxide nanocrystals. Journal of the American Chemical Society, 2005, 127(26): 9506-9511

[107] Yahus B D, Yang P D. Nanowire-based all-oxide solar cells. Journal of the American Chemical Society, 2009, 131(10): 3756-3761

[108] Yin M, O’Brien S. Synthesis of monodisperse nanocrystals of manganese oxides. Journal of the American Chemical Society, 2003, 125(34): 10180-10181

[109] Yin M, Gu Y, Kuskovsky I L, Andelman T, Zhu Y, Neumark G F, O’Brien S. Zinc oxide quantum rods. Journal of the American Chemical Society, 2004, 126(20): 6206-6207

[110] Yuhas B D, Zitoun D O, Pauzauskie P J, He R, Yang P D. Transition-metal doped zinc oxide nanowires. Angewandte Chemie International Edition, 2006, 45(3): 420-423

[111] Liang W J, Yuhas B D, Yang P D. Magnetotransport in Co-doped ZnO nanowires. Nano Letters, 2009, 9(2): 892-896

[112] Wu H, Pan W. Preparation of zinc oxide nanofibers by electrospinning. Journal of the American Ceramic Society, 2006, 89(2): 699-701

[113] Pradhan D, Leung K T. Vertical growth of two-dimensional zinc oxide nanostructures on ITO-coated glass: effects of deposition temperature and deposition time. Journal of Physical Chemistry C, 2008, 112(5): 1357-1364

[114] Inamdar A I, Mujawar S H, Ganesan V, Patil P S. Surfactantmediated growth of nanostructured zinc oxide thin films via electrodeposition and their photoelectrochemical performance. Nanotechnology, 2008, 19(32): 325706-1-325706-7

[115] Rakhshani A E. Optical and electrical characterization of wellaligned ZnO rods electrodeposited on stainless steel foil. Applied Physics A, Materials Science & Processing, 2008, 92(2): 303-308

[116] Chen J, Ae L, Aichele C, Lux-Steiner M C. High internal quantum efficiency ZnO nanorods prepared at low temperature. Applied Physics Letters, 2008, 92(16): 161906-1-161906-3

[117] Elias J, Tena-Zaera R, Wang G Y, Levy-Clement C. Conversion of ZnO nanowires into nanotubes with tailored dimensions. Chemistry of Materials, 2008, 20(21): 6633-6637

[118] Xu L F, Liao Q, Zhang J P, Ai X C, Xu D S. Single-crystalline ZnO nanotube arrays on conductive glass substrates by selective disolution of electrodeposited ZnO nanorods. Journal of Physical Chemistry C, 2007, 111(12): 4539-4552

[119] Siddheswaran R, Sankar R, Babu M R, Rathnakumari M, Jayavel R, Murugakoothan P, Sureshkumar P. Preparation and characterization of ZnO nanofibers by electrospinning. Crystal Research and Technology, 2006, 41(5): 446-449

[120] Liu H Q, Yang J X, Liang J H, Huang Y X, Tang C Y. ZnO nanofiber and nanoparticle synthesized through electrospinning and their photocatalytic activity under visible light. Journal of the American Ceramic Society, 2008, 91(4): 1287-1291

[121] Wu H, Lin D D, Zhang R, Pan W. ZnO nanofiber field-effect transistor assembled by electrospinning. Journal of the American Ceramic Society, 2008, 91(2): 656-659

[122] Wang W, Huang H M, Li Z Y, Zhang H N, Wang Y, Zheng W, Wang C. Zinc oxide nanofiber gas sensors via electrospinning. Journal of the American Ceramic Society, 2008, 91(11): 3817-3819

[123] Viswanathamurthi P, Bhattarai N, Kim H Y, Lee D R. The photoluminescence properties of zinc oxide nanofibres prepared by electrospinning. Nanotechnology, 2004, 15(3): 320-323

[124] Keller F, Hunter M S, Robinson D L. Structural features of oxide coatings on aluminum. Journal of the Electrochemical Society, 1953, 100(9): 411-419

[125] Martinson A B F, Elam J W, Hupp J T, Pellin M J. ZnO nanotube based dye-sensitized solar cells. Nano Letters, 2007, 7(8): 2183-2187

[126] Shen X P, Yuan A H, Hu Y M, Jiang Y, Xu Z, Hu Z. Fabrication, characterization and field emission properties of large-scale uniform ZnO nanotube arrays. Nanotechnology, 2005, 16(10): 2039-2043

[127] Wei A, Sun X W, Xu C X, Dong Z L, Yu M B, Huang W. Stable field emission from hydrothermally grown ZnO nanotubes. Applied Physics Letters, 2006, 88(21): 213102-1-213102-3

[128] Unalan H E, Hiralal P, Rupesinghe N, Dalal S, Milne W I, Amaratunga G A J. Rapid synthesis of aligned zinc oxide nanowires. Nanotechnology, 2008, 19(25): 255608-1-255608-5

[129] Lommens P, Thourhout D V, Smet P F, Poelman D, Hens Z. Electrophoretic deposition of ZnO nanoparticles, from micropatterns to substrate coverage. Nanotechnology, 2008, 19(24): 245301-1-245301-6

[130] Yang H Y, Lau S P, Yu S F, Huang L, Tanemura M, Tanaka J, Okita T, Hng H H. Field emission from zinc oxide nanoneedles on plastic substrates. Nanotechnology, 2005, 16(8): 1300-1303

[131] Zhang H Z, Wang R M, Zhu Y W. Effect of adsorbates on fieldelectron emission from ZnO nanoneedle arrays. Journal of Applied Physics, 2004, 96(1): 624-628

[132] Jo S H, Banerjee D, Ren Z F. Field emission of zinc oxide nanowires grown on carbon cloth. Applied Physics Letters, 2004, 85(8): 1407-1409

[133] Ham H, Shen G Z, Cho J H, Lee T J, Seo S H, Lee C J. Vertically aligned ZnO nanowires produced by a catalyst-free thermal evaporation method and their field emission properties. Chemical Physics Letters, 2005, 404(1-3): 69-73

[134] Tseng Y K, Huang C J, Cheng H M, Lin I N, Liu K S, Chen I C. Characterization and field-emission properties of needle-like zinc oxide nanowires grown vertically on conductive zinc oxide films. Advanced Functional Materials, 2003, 13(10): 811-814

[135] Xu C X, Sun X W, Fang S N, Yang X H, Yu M B, Zhu G P, Cui Y P. Electrochemically deposited zinc oxide arrays for field emission. Applied Physics Letters, 2006, 88(16): 161921-1-161921-3

[136] Minami T, Miyata T, Yamamoto T. Work function of transparent conducting multicomponent oxide thin films prepared by magnetron sputtering. Surface and Coatings Technology, 1998, 108-109: 583-587

[137] Xu C X, Sun X W, Chen B J. Field emission from gallium-doped zinc oxide nanofiber array. Applied Physics Letters, 2004, 84(9): 1540-1542

[138] Yeong K S, Maung K H, Thong J T L. The effects of gas exposure and UV illumination on field emission from individual ZnO nanowires. Nanotechnology, 2007, 18(18): 185608-1-185608-4

[139] Ye C H, Bando Y, Fang X S, Shen G Z, Golberg D. Enhanced field emission performance of ZnO nanorods by two alternative approaches. Journal of Physical Chemistry C, 2007, 111(34): 12673-12676

[140] Chang C C, Chang C S. Site-specific growth to control ZnO nanorods density and related field emission properties. Solid State Communications, 2005, 135(11-12): 765-768

[141] Liu J, She J C, Deng S Z, Chen J, Xu N S. Ultrathin seed-layer for tuning density of ZnO nanowire arrays and their field emission characteristics. Journal of Physical Chemistry C, 2008, 112(31): 11685-11690

[142] Zhao Q, Zhang H Z, Zhu Y W, Feng S Q, Sun X C, Xu J, Yu D P. Morphological effects on the field emission of ZnO nanorod arrays. Applied Physics Letters, 2005, 86(20): 203115-1-203115-3

[143] Banerjee D, Jo S H, Ren Z F. Enhanced field emission of ZnO nanowires. Advanced Materials, 2004, 16(22): 2028-2032

[144] Yoo J, Park W I, Yi G C. Electrical and optical characteristics of hydrogen-plasma treated ZnO nanoneedles. Journal of Vacuum Science & Technology B Microelectronics and Nanometer Structures, 2005, 23(5): 1970-1974

[145] Li C, Fang G J, Yuan L Y, Liu N S, Li J, Li D J, Zhao X Z. Field electron emission improvement of ZnO nanorod arrays after Ar plasma treatment. Applied Surface Science, 2007, 253(20): 8748-8482

[146] Zhao Q, Xu X Y, Song X F, Zhang X Z, Yu D P, Li C P, Guo L. Enhanced field emission from ZnO nanorods via thermal annealing in oxygen. Applied Physics Letters, 2006, 88(3): 033102-1-033102-3

[147] Li Q H,Wan Q, Chen Y J,Wang T H, Jia H B, Yu D P. Stable field emission from tetrapod-like ZnO nanostructures. Applied Physics Letters, 2004, 85(4): 636-638

[148] Liao L, Li J C, Wang D F, Liu C, Fu Q. Electron field emission studies on ZnO nanowires. Materials Letters, 2005, 59(19-20): 2465-2467

[149] Cheng J P, Zhang Y J, Guo R Y. Field emission properties of ZnO single crystal microtubes. Journal of Applied Physics, 2009, 105(3): 0234103-1-0234103-4

[150] Liu J P, Huang X T, Li Y Y, Ji X X, Li Z K, He X, Sun F L. Vertically aligned 1D ZnO nanostructures on bulk alloy substrates: direct solution synthesis, photoluminescence, and field emission. Journal of Physical Chemistry C, 2007, 111(13): 4990-4997

[151] Dong L F, Jiao J, Tuggle D W, Petty J M, Elliff S A, Coulter M. ZnO nanowires formed on tungsten substrates and their electron field emission properties. Applied Physics Letters, 2003, 82(7): 1096-1098

[152] Umar A, Kim S H, Lee H, Lee N, Hahn Y B. Optical and field emission properties of single-crystalline aligned ZnO nanorods grown on aluminium substrate. Journal of Physics D, Applied Physics, 2008, 41(6): 065412-1-065412-6

[153] Huang M H, Mao S, Feick H, Yan H, Wu Y Y, Kind H, Weber E, Russo R, Yang P D. Room-temperature ultraviolet nanowire nanolasers. Science, 2001, 292(5523): 1897-1899

Meirong SUI, Ping GONG, Xiuquan GU. Review on one-dimensional ZnO nanostructures for electron field emitters[J]. Frontiers of Optoelectronics, 2013, 6(4): 386. Meirong SUI, Ping GONG, Xiuquan GU. Review on one-dimensional ZnO nanostructures for electron field emitters[J]. Frontiers of Optoelectronics, 2013, 6(4): 386.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!