发光学报, 2019, 40 (7): 907, 网络出版: 2019-07-31   

石墨片作辅助热沉的高功率半导体激光器热传导特性

Heat Transfer Characteristics of High Power Semiconductor Laser with Graphite Sheet as Auxiliary Heat Sink
作者单位
长春理工大学 高功率半导体激光国家重点实验室, 吉林 长春 130022
摘要
为使边发射高功率单管半导体激光器有源区温度降低, 增加封装结构的散热性能, 降低器件封装成本, 提出一种采用高热导率的石墨片作为辅助热沉的高功率半导体激光器封装结构。利用有限元分析研究了采用石墨片作辅助热沉后, 封装器件的工作热阻更低, 散热效果更好。研究分析过渡热沉铜钨合金与辅助热沉石墨的宽度尺寸变化对半导体激光器有源区温度的影响。新型封装结构与使用铜钨合金作为过渡热沉的传统结构相比, 有源区结温降低4.5 K, 热阻降低0.45 K/W。通过计算可知, 激光器的最大输出功率为20.6 W。在研究结果的指导下, 确定铜钨合金与石墨的结构尺寸, 以达到最好的散热效果。
Abstract
In order to reduce the temperature of the active region of the high-power single-tube semiconductor laser, increase the heat dissipation performance of the package structure, and reduce the cost of the device package, a high-power semiconductor laser package structure using a high thermal conductivity graphite sheet as an auxiliary heat sink is proposed. Using finite element analysis, the use of graphite sheets as auxiliary heat sinks has been studied, and the packaged devices have lower thermal resistance and better heat dissipation. The effect of the variation of the width dimension of the transition heat sink copper-tungsten alloy and the auxiliary heat sink graphite on the active region temperature of the semiconductor laser was investigated. Compared with the traditional structure using copper-tungsten alloy as the transition heat sink, the new package structure has a junction temperature of 4.5 K and a thermal resistance of 0.45 K/W. According to the calculation, the maximum output power of the laser is 20.6 W. Under the guidance of the research results, the structural dimensions of copper-tungsten alloy and graphite can be determined to achieve the best heat dissipation effect.
参考文献

[1] 韩晓俊,李正佳,朱长虹. 半导体激光器在医学上的应用 [J]. 光学技术, 1998(2):7-10.

    HAN X J,LI Z J,ZHU C H. Laser diode applied in medicine [J]. Opt. Technol., 1998(2):7-10. (in Chinese)

[2] 耿素杰,王琳. 半导体激光器及其在军事领域的应用 [J]. 激光与红外, 2003,33(4):311-312.

    GENG S J,WANG L. The semiconductor laser and its applications in military [J]. Laser Infrared, 2003,33(4):311-312. (in Chinese)

[3] 张纯. 半导体激光器在印刷工业上的应用 [J]. 光电子·激光, 1991,2(4):231-235.

    ZHANG C. The application of the transistor-laser in the printing industry [J]. J. Optoelectr. Laser, 1991,2(4):231-235. (in Chinese)

[4] 汪瑜. 半导体激光器热特性分析研究 [D]. 长春:长春理工大学, 2009:16-17.

    WANG Y. Analysis and Research for The Thermal Characteristic of The Semiconductor Laser [D]. Changchun:Changchun University of Science and Technology, 2009:16-17. (in Chinese)

[5] 廖翌如,关宝璐,李建军,等. 低阈值852 nm半导体激光器的温度特性 [J]. 发光学报, 2017,38(3):331-337.

    LIAO Y R,GUAN B L,LI J J,et al.. Thermal characteristics of the low threshold 852 nm semiconductor lasers [J]. Chin. J. Lumin., 2017,38(3):331-337. (in Chinese)

[6] 王辉. 半导体激光器封装中热应力和变形的分析 [J]. 半导体技术, 2008,33(8):718-720.

    WANG H. Thermal stress and deformation analysis of semiconductor lasers packaging [J]. Semicond. Technol., 2008,33(8):718-720. (in Chinese)

[7] ZHANG X L,BO B X,QIAO Z L,et al.. Analysis of thermal characteristics based on a new type diode laser packaging structure [J]. Opt. Eng., 2017,56(8):085105-1-5.

[8] 刘一兵,戴瑜兴,黄志刚. 照明用大功率发光二极管封装材料的优化设计 [J]. 光子学报, 2011,40(5):663-666.

    LIU Y B,DAI Y X,HUANG Z G. Optimization design on packaging materials of high-power LED for lighting [J]. Acta Photon. Sinica, 2011,40(5):663-666. (in Chinese)

[9] 倪羽茜,井红旗,孔金霞,等. 碳化硅封装高功率半导体激光器散热性能研究 [J]. 中国激光, 2018,45(1):0101002-1-5.

    NI Y X,JING H Q,KONG J X,et al.. Thermal performance of high-power laser diodes packaged by SiC ceramic submount [J]. Chin. J. Lasers, 2018,45(1):0101002-1-5. (in Chinese)

[10] KUC M,WASIAK M,SARZALA R P. Impact of heat spreaders on thermal performance of Ⅲ-N-based laser diode [J]. IEEE Trans. Comp., Pack. Manuf. Technol., 2015,5(4):474-482.

[11] 王文,许留洋,王云华,等. 热沉尺寸对半导体激光器有源区温度的影响 [J]. 半导体光电, 2013,34(5):765-769.

    WANG W,XU L Y,WANG Y H,et al.. Influences of the dimension of heat sink on the temperature of active region in semiconductor laser [J]. Semicond. Optoelectr., 2013,34(5):765-769. (in Chinese)

[12] ONO S,NAGANO H,NISHIKAWA Y,et al.. Thermophysical properties of high-thermal-conductivity graphite sheet and application to deployable/stowable radiator [J]. J. Thermophys. Heat Trans., 2015,29(2):347-353.

[13] WEN C Y,HUANG G W. Application of a thermally conductive pyrolytic graphite sheet to thermal management of a PEM fuel cell [J]. J. Power Sources, 2008,178(1):132-140.

[14] MALEKPOUR H,CHANG K H,CHEN J C,et al.. Thermal conductivity of graphene laminate [J]. Nano Lett., 2014,14(9):5155-5161.

[15] WANG Y X,OVERMEYER L. Chip-level packaging of edge-emitting laser diodes onto low-cost transparent polymer substrates using optodic bonding [J]. IEEE Trans. Comp., Pack. Manuf. Technol., 2016,6(5):667-674.

[16] 王文,高欣,周泽鹏,等. 百瓦级多芯片半导体激光器稳态热分析 [J]. 红外与激光工程, 2014,43(5):1438-1443.

    WANG W,GAO X,ZHOU Z P,et al.. Steady-state thermal analysis of hundred-watt semiconductor laser with multichip-packaging [J]. Infrared Laser Eng., 2014,43(5):1438-1443. (in Chinese)

[17] 杨宏宇,舒世立,刘林,等. 半导体激光器模块散热特性影响因素分析 [J]. 半导体光电, 2016,37(6):770-775.

    YANG H Y,SHU S L,LIU L,et al.. Analysis on influencing factors of heat dissipation characteristics of semiconductor laser module [J]. Semicond. Optoelectr., 2016,37(6):770-775. (in Chinese)

[18] 韩立,徐莉,李洋,等. 基于C-mount封装的半导体激光器热特性模拟分析 [J]. 长春理工大学学报(自然科学版), 2016,39(3):27-31.

    HAN L,XU L,LI Y,et al.. Thermal characteristic simulation and analysis of semiconductor laser based on C-mount [J]. J. Changchun Univ. Sci. Technol.(Nat. Sci. Ed.), 2016,39(3):27-31. (in Chinese)

[19] LI X N,ZHANG Y X,WANG J W,et al.. Influence of package structure on the performance of the single emitter diode laser [J]. IEEE Trans. Comp., Pack. Manuf. Technol., 2012,2(10):1592-1599.

[20] 井红旗,仲莉,倪羽茜,等. 高功率密度激光二极管叠层散热结构的热分析 [J]. 发光学报, 2016,37(1):81-87.

    JING H Q,ZHONG L,NI Y X,et al.. Thermal analysis of high power density laser diode stack cooling structure [J]. Chin. J. Lumin., 2016,37(1):81-87. (in Chinese)

[21] 姜晓光,赵英杰,吴志全. 基于ANSYS半导体激光器热特性模拟与分析 [J]. 长春理工大学学报(自然科学版), 2010,33(1):41-43.

    JIANG X G,ZHAO Y J,WU Z Q. Thermal characteristic simulation and analysis of semiconductor laser based on ANSYS [J]. J. Changchun Univ. Sci. Technol.(Nat. Sci. Ed.), 2010,33(1):41-43. (in Chinese)

[22] 杨振忠,马忠良,王峰. 基于石墨导热介质的新型LED路灯散热系统 [J]. 照明工程学报, 2011,22(3):49-52.

    YANG Z Z,MA Z L,WANG F. A new LED road lighting luminaire heat dissipation system based on graphite material [J]. China Illum. Eng. J., 2011,22(3):49-52. (in Chinese)

[23] 邱海鹏,郭全贵,宋永忠,等. 石墨材料导热性能与微晶参数关系的研究 [J]. 新型炭材料, 2002,17(1):36-40.

    QIU H P,GUO Q G,SONG Y Z,et al.. Study of the relationship between thermal conductivity and microcrystalline parameters of bulk graphite [J]. New Carbon Mater., 2002,17(1):36-40. (in Chinese)

[24] 程小爱,曹晓燕,张慧玲,等. 石墨表面金属化处理及检测 [J]. 表面技术, 2006,35(3):4-7.

    CHENG X A,CAO X Y,ZHANG H L,et al.. Metal-modification and detection of graphite surface [J]. Surf. Technol.,2006,35(3):4-7. (in Chinese)

[25] 黄凯,白华,朱英彬,等. 石墨表面化学镀Cu对天然鳞片石墨/Al复合材料热物理性能的影响 [J]. 复合材料学报, 2018,35(4):920-926.

    HUANG K,BAI H,ZHU Y B,et al.. Thermal conductivity and mechanical properties of flak graphite/Al composite with electroless Cu plating on graphite surface [J]. Acta Mater. Comp. Sinica, 2018,35(4):920-926. (in Chinese)

[26] SONG X G,CHAI J H,HU S P,et al.. A novel metallization process for soldering graphite to copper at low temperature [J]. J. Alloy. Comp., 2016,696:1199-1204.

房俊宇, 石琳琳, 张贺, 杨智焜, 徐英添, 徐莉, 马晓辉. 石墨片作辅助热沉的高功率半导体激光器热传导特性[J]. 发光学报, 2019, 40(7): 907. FANG Jun-yu, SHI Lin-lin, ZHANG He, YANG Zhi-kun, XU Ying-tian, XU Li, MA Xiao-hui. Heat Transfer Characteristics of High Power Semiconductor Laser with Graphite Sheet as Auxiliary Heat Sink[J]. Chinese Journal of Luminescence, 2019, 40(7): 907.

本文已被 3 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!